BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 28322011)

  • 1. FcRav2, a gene with a ROGDI domain involved in Fusarium head blight and crown rot on durum wheat caused by Fusarium culmorum.
    Spanu F; Scherm B; Camboni I; Balmas V; Pani G; Oufensou S; Macciotta N; Pasquali M; Migheli Q
    Mol Plant Pathol; 2018 Mar; 19(3):677-688. PubMed ID: 28322011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat.
    Scherm B; Balmas V; Spanu F; Pani G; Delogu G; Pasquali M; Migheli Q
    Mol Plant Pathol; 2013 May; 14(4):323-41. PubMed ID: 23279114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposition of the miniature inverted-repeat transposable element mimp1 in the wheat pathogen Fusarium culmorum.
    Spanu F; Pasquali M; Scherm B; Balmas V; Marcello A; Ortu G; Dufresne M; Hoffmann L; Daboussi MJ; Migheli Q
    Mol Plant Pathol; 2012 Dec; 13(9):1149-55. PubMed ID: 22897438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects.
    Kazan K; Gardiner DM
    Mol Plant Pathol; 2018 Jul; 19(7):1547-1562. PubMed ID: 29105256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum.
    Van Thuat N; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection.
    Ilgen P; Hadeler B; Maier FJ; Schäfer W
    Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity.
    Sella L; Gazzetti K; Castiglioni C; Schäfer W; Favaron F
    Phytopathology; 2014 Nov; 104(11):1201-7. PubMed ID: 24779355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum.
    Lu S; Edwards MC
    Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development.
    Goswami RS; Xu JR; Trail F; Hilburn K; Kistler HC
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1877-1890. PubMed ID: 16735750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the XylA gene, encoding a cell wall degrading enzyme, during common wheat, durum wheat and barley colonization by Fusarium graminearum.
    Tini F; Beccari G; Benfield AH; Gardiner DM; Covarelli L
    Fungal Genet Biol; 2020 Mar; 136():103318. PubMed ID: 31841669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals.
    Nielsen LK; Jensen JD; Rodríguez A; Jørgensen LN; Justesen AF
    Int J Food Microbiol; 2012 Jul; 157(3):384-92. PubMed ID: 22781579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner.
    Pasquali M; Spanu F; Scherm B; Balmas V; Hoffmann L; Hammond-Kosack KE; Beyer M; Migheli Q
    PLoS One; 2013; 8(2):e57429. PubMed ID: 23451228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum.
    Liu N; Fan F; Qiu D; Jiang L
    Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests.
    Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC
    Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transposon-tagging identifies novel pathogenicity genes in Fusarium graminearum.
    Dufresne M; van der Lee T; Ben M'barek S; Xu X; Zhang X; Liu T; Waalwijk C; Zhang W; Kema GH; Daboussi MJ
    Fungal Genet Biol; 2008 Dec; 45(12):1552-61. PubMed ID: 18926918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum.
    Qin J; Wu M; Zhou S
    Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deoxynivalenol Detoxification in Transgenic Wheat Confers Resistance to Fusarium Head Blight and Crown Rot Diseases.
    Mandalà G; Tundo S; Francesconi S; Gevi F; Zolla L; Ceoloni C; D'Ovidio R
    Mol Plant Microbe Interact; 2019 May; 32(5):583-592. PubMed ID: 30422742
    [No Abstract]   [Full Text] [Related]  

  • 18. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence.
    Sella L; Gazzetti K; Faoro F; Odorizzi S; D'Ovidio R; Schäfer W; Favaron F
    Plant Physiol Biochem; 2013 Mar; 64():1-10. PubMed ID: 23337356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum.
    Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR
    Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites.
    Beccari G; Colasante V; Tini F; Senatore MT; Prodi A; Sulyok M; Covarelli L
    Food Microbiol; 2018 Apr; 70():17-27. PubMed ID: 29173624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.