BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28322049)

  • 1. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Shortwave Infrared Detector Based on Multilayer Carbon Nanotube Films.
    Cai X; Hong D; Wu W; Han B; Liang X; Wang S
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13508-13516. PubMed ID: 36853991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significantly enhanced photoresponse of carbon nanotube films modified with cesium tungsten bronze nanoclusters in the visible to short-wave infrared range.
    Chen H; Zhu J; Cao Y; Wei J; Lv B; Hu Q; Sun JL
    RSC Adv; 2021 Dec; 11(63):39646-39656. PubMed ID: 35494114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcavity-Integrated Carbon Nanotube Photodetectors.
    Liang S; Ma Z; Wu G; Wei N; Huang L; Huang H; Liu H; Wang S; Peng LM
    ACS Nano; 2016 Jul; 10(7):6963-71. PubMed ID: 27379375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films.
    Liu Y; Yin J; Wang P; Hu Q; Wang Y; Xie Y; Zhao Z; Dong Z; Zhu JL; Chu W; Yang N; Wei J; Ma W; Sun JL
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36304-36311. PubMed ID: 30264557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors.
    Ahmadivand A; Gerislioglu B; Ramezani Z
    Nanoscale; 2019 Jul; 11(27):13108-13116. PubMed ID: 31268076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic-enhanced carbon nanotube infrared bolometers.
    Mahjouri-Samani M; Zhou YS; He XN; Xiong W; Hilger P; Lu YF
    Nanotechnology; 2013 Jan; 24(3):035502. PubMed ID: 23263607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors.
    Yang Y; Jeon J; Park JH; Jeong MS; Lee BH; Hwang E; Lee S
    ACS Nano; 2019 Aug; 13(8):8804-8810. PubMed ID: 31310513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection.
    Yang L; Wang S; Zeng Q; Zhang Z; Peng LM
    Small; 2013 Apr; 9(8):1225-36. PubMed ID: 23529815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity.
    Li X; Yu D; Chen J; Wang Y; Cao F; Wei Y; Wu Y; Wang L; Zhu Y; Sun Z; Ji J; Shen Y; Sun H; Zeng H
    ACS Nano; 2017 Feb; 11(2):2015-2023. PubMed ID: 28107628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons.
    Yakimov AI; Kirienko VV; Bloshkin AA; Armbrister VA; Dvurechenskii AV; Hartmann JM
    Opt Express; 2017 Oct; 25(21):25602-25611. PubMed ID: 29041225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological Crystalline Insulator SnTe/Si Vertical Heterostructure Photodetectors for High-Performance Near-Infrared Detection.
    Zhang H; Man B; Zhang Q
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14067-14077. PubMed ID: 28398029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A MEMS-Based Quad-Wavelength Hybrid Plasmonic-Pyroelectric Infrared Detector.
    Doan AT; Yokoyama T; Dao TD; Ishii S; Ohi A; Nabatame T; Wada Y; Maruyama S; Nagao T
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment enhanced photoconductivity in single wall carbon nanotube films.
    Liu Y; Lu S; Panchapakesan B
    Nanotechnology; 2009 Jan; 20(3):035203. PubMed ID: 19417289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy.
    Ahmed AS; Kim HJ; Kim J; Hwang KS; Kim S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28425964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity.
    Chen Z; Li X; Wang J; Tao L; Long M; Liang SJ; Ang LK; Shu C; Tsang HK; Xu JB
    ACS Nano; 2017 Jan; 11(1):430-437. PubMed ID: 28005326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.
    Liu Y; Wei N; Zhao Q; Zhang D; Wang S; Peng LM
    Nanoscale; 2015 Apr; 7(15):6805-12. PubMed ID: 25807291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimension effect on the performance of carbon nanotube nanobolometers.
    Christianson C; Lu R; Wu J
    Nanotechnology; 2014 Oct; 25(42):425503. PubMed ID: 25272199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.