BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28322299)

  • 1. Environment-insensitive and gate-controllable photocurrent enabled by bandgap engineering of MoS
    Shih FY; Wu YC; Shih YS; Shih MC; Wu TS; Ho PH; Chen CW; Chen YF; Chiu YP; Wang WH
    Sci Rep; 2017 Mar; 7():44768. PubMed ID: 28322299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging.
    Son Y; Wang QH; Paulson JA; Shih CJ; Rajan AG; Tvrdy K; Kim S; Alfeeli B; Braatz RD; Strano MS
    ACS Nano; 2015 Mar; 9(3):2843-55. PubMed ID: 25704152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS
    Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating.
    Buscema M; Groenendijk DJ; Steele GA; van der Zant HS; Castellanos-Gomez A
    Nat Commun; 2014 Aug; 5():4651. PubMed ID: 25164986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale etching of hexagonal boron nitride for device integration based on two-dimensional materials.
    Park H; Shin GH; Lee KJ; Choi SY
    Nanoscale; 2018 Aug; 10(32):15205-15212. PubMed ID: 29808902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions.
    Hong T; Chamlagain B; Wang T; Chuang HJ; Zhou Z; Xu YQ
    Nanoscale; 2015 Nov; 7(44):18537-41. PubMed ID: 26489362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.
    Lee GH; Cui X; Kim YD; Arefe G; Zhang X; Lee CH; Ye F; Watanabe K; Taniguchi T; Kim P; Hone J
    ACS Nano; 2015 Jul; 9(7):7019-26. PubMed ID: 26083310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-controlled precise fabrication of ultrathin MoS
    Liu L; Huang Y; Sha J; Chen Y
    Nanotechnology; 2017 May; 28(19):195605. PubMed ID: 28323252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p-n vdW Heterostructure.
    Yang S; Wang C; Ataca C; Li Y; Chen H; Cai H; Suslu A; Grossman JC; Jiang C; Liu Q; Tongay S
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2533-9. PubMed ID: 26796869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions.
    Hong T; Chamlagain B; Hu S; Weiss SM; Zhou Z; Xu YQ
    ACS Nano; 2015 May; 9(5):5357-63. PubMed ID: 25871507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS
    Wang R; Wang T; Hong T; Xu YQ
    Nanotechnology; 2018 Aug; 29(34):345205. PubMed ID: 29869994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two dimensional atomically thin MoS2 nanosheets and their sensing applications.
    Huang Y; Guo J; Kang Y; Ai Y; Li CM
    Nanoscale; 2015 Dec; 7(46):19358-76. PubMed ID: 26554465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of band-offsets at monolayer-multilayer MoS₂ junctions by scanning photocurrent microscopy.
    Howell SL; Jariwala D; Wu CC; Chen KS; Sangwan VK; Kang J; Marks TJ; Hersam MC; Lauhon LJ
    Nano Lett; 2015 Apr; 15(4):2278-84. PubMed ID: 25807012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale enhancement of photoconductivity by localized charge traps in the grain structures of monolayer MoS
    Yang M; Kim TY; Lee T; Hong S
    Sci Rep; 2018 Oct; 8(1):15822. PubMed ID: 30361562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.
    Wi S; Kim H; Chen M; Nam H; Guo LJ; Meyhofer E; Liang X
    ACS Nano; 2014 May; 8(5):5270-81. PubMed ID: 24783942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform.
    Cui X; Lee GH; Kim YD; Arefe G; Huang PY; Lee CH; Chenet DA; Zhang X; Wang L; Ye F; Pizzocchero F; Jessen BS; Watanabe K; Taniguchi T; Muller DA; Low T; Kim P; Hone J
    Nat Nanotechnol; 2015 Jun; 10(6):534-40. PubMed ID: 25915194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates.
    Chan MY; Komatsu K; Li SL; Xu Y; Darmawan P; Kuramochi H; Nakaharai S; Aparecido-Ferreira A; Watanabe K; Taniguchi T; Tsukagoshi K
    Nanoscale; 2013 Oct; 5(20):9572-6. PubMed ID: 23986323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-layer MoS2 electronics.
    Lembke D; Bertolazzi S; Kis A
    Acc Chem Res; 2015 Jan; 48(1):100-10. PubMed ID: 25555202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors.
    Cho K; Kim TY; Park W; Park J; Kim D; Jang J; Jeong H; Hong S; Lee T
    Nanotechnology; 2014 Apr; 25(15):155201. PubMed ID: 24642746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.