These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28322367)

  • 1. High thermal stability of core-shell structures dominated by negative interface energy.
    Zhu YF; Zhao N; Jin B; Zhao M; Jiang Q
    Phys Chem Chem Phys; 2017 Mar; 19(13):9253-9260. PubMed ID: 28322367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.
    Huang R; Wen YH; Zhu ZZ; Sun SG
    Phys Chem Chem Phys; 2016 Apr; 18(14):9847-54. PubMed ID: 27003035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of shell thickness on the thermal stability and melting-like behavior of Al@Fe core-shell nanoparticles from atomistic simulations: a structural and dynamic description.
    Cuba-Supanta G; Pinto-Vergara MZ; Huaman Morales E; Romero Peña MH; Rojas-Tapia J
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37146619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.
    Wen YH; Huang R; Shao GF; Sun SG
    J Phys Chem Lett; 2017 Sep; 8(17):4273-4278. PubMed ID: 28837772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au@Void@Ag Yolk-Shell Nanoclusters Visited by Molecular Dynamics Simulation: The Effects of Structural Factors on Thermodynamic Stability.
    Akbarzadeh H; Mehrjouei E; Shamkhali AN
    J Phys Chem Lett; 2017 Jul; 8(13):2990-2998. PubMed ID: 28618220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscopic Thermodynamics.
    Qi W
    Acc Chem Res; 2016 Sep; 49(9):1587-95. PubMed ID: 27355129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.
    Zhang YS; Zhao YH; Zhang W; Lu JW; Hu JJ; Huo WT; Zhang PX
    Sci Rep; 2017 Jan; 7():40039. PubMed ID: 28059150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Shell Transformation-Imprinted Solder Bumps Enabling Low-Temperature Fluidic Self-Assembly and Self-Alignment of Chips and High Melting Point Interconnects.
    Kaltwasser M; Schmidt U; Biswas S; Reiprich J; Schlag L; Isaac NA; Stauden T; Jacobs HO
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40608-40613. PubMed ID: 30433752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of composition and architecture on the thermodynamic behavior of AuCu nanoparticles.
    Yang WH; Yu FQ; Huang R; Lin YX; Wen YH
    Nanoscale; 2024 Jul; 16(27):13197-13209. PubMed ID: 38916453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting and superheating in solids with volume shrinkage at melting: a molecular dynamics study of silicon.
    Zhang Q; Li Q; Li M
    J Chem Phys; 2013 Jan; 138(4):044504. PubMed ID: 23387602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial melting mechanism of nanocrystals determined by interfacial energy and interfacial stress.
    Jiang XB; Xiao BB; Sheng HC
    Phys Chem Chem Phys; 2022 May; 24(18):11336-11344. PubMed ID: 35485926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting-like Transition in a Ternary Alkali Nanoalloy:  Li13Na30Cs12.
    Aguado A; López JM
    J Chem Theory Comput; 2005 Mar; 1(2):299-306. PubMed ID: 26641301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the thermal stability of phytase using core-shell hydrogel beads.
    Yang E; Dong H; Khongkomolsakul W; Dadmohammadi Y; Abbaspourrad A
    Food Chem X; 2024 Mar; 21():101082. PubMed ID: 38162037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric Cu
    Zhang B; Zhao X; Dong T; Zhang A; Zhang X; Han G; Zhou X
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local and bulk melting of shocked columnar nanocrystalline Cu: Dynamics, anisotropy, premelting, superheating, supercooling, and re-crystallization.
    He AM; Duan SQ; Shao JL; Wang P; Luo SN
    J Chem Phys; 2013 Aug; 139(7):074502. PubMed ID: 23968097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.
    Rey M; Fernández-Rodríguez MÁ; Steinacher M; Scheidegger L; Geisel K; Richtering W; Squires TM; Isa L
    Soft Matter; 2016 Apr; 12(15):3545-57. PubMed ID: 26948023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superheating of grain boundaries within bulk colloidal crystals.
    Xiao X; Wang L; Wang Z; Wang Z
    Nat Commun; 2022 Mar; 13(1):1599. PubMed ID: 35332168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.