These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28322859)

  • 1. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
    Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC;
    Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological Component Analysis of Functional MRI Brain Networks.
    Nguyen HM; Chen J; Glover GH
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3193-3204. PubMed ID: 35358040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
    Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM
    Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).
    Chen Z; Calhoun VD
    J Neurosci Methods; 2016 Mar; 261():161-71. PubMed ID: 26778607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of separation performance of independent component analysis algorithms for fMRI data.
    Sariya YK; Anand RS
    J Integr Neurosci; 2017; 16(2):157-175. PubMed ID: 28891507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity.
    de Pierrefeu A; Fovet T; Hadj-Selem F; Löfstedt T; Ciuciu P; Lefebvre S; Thomas P; Lopes R; Jardri R; Duchesnay E
    Hum Brain Mapp; 2018 Apr; 39(4):1777-1788. PubMed ID: 29341341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive independent vector analysis for multi-subject complex-valued fMRI data.
    Kuang LD; Lin QH; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2017 Apr; 281():49-63. PubMed ID: 28214528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Comparisons of Sparse Dictionary Learning and Independent Component Analysis for Brain Network Inference From fMRI Data.
    Zhang W; Lv J; Li X; Zhu D; Jiang X; Zhang S; Zhao Y; Guo L; Ye J; Hu D; Liu T
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):289-299. PubMed ID: 29993466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiblind spatial ICA of fMRI using spatial constraints.
    Lin QH; Liu J; Zheng YR; Liang H; Calhoun VD
    Hum Brain Mapp; 2010 Jul; 31(7):1076-88. PubMed ID: 20017117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ICA of full complex-valued fMRI data using phase information of spatial maps.
    Yu MC; Lin QH; Kuang LD; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2015 Jul; 249():75-91. PubMed ID: 25857613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.