These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 28322859)
1. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859 [TBL] [Abstract][Full Text] [Related]
2. Analysis of fMRI data by blind separation into independent spatial components. McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671 [TBL] [Abstract][Full Text] [Related]
3. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources. Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161 [TBL] [Abstract][Full Text] [Related]
4. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
5. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis. Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC; Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138 [TBL] [Abstract][Full Text] [Related]
6. Spatially regularized machine learning for task and resting-state fMRI. Song X; Panych LP; Chen NK J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627 [TBL] [Abstract][Full Text] [Related]
8. Sparse regularization techniques provide novel insights into outcome integration processes. Mohr H; Wolfensteller U; Frimmel S; Ruge H Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302 [TBL] [Abstract][Full Text] [Related]
9. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
10. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
11. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. Wang N; Zeng W; Chen L J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324 [TBL] [Abstract][Full Text] [Related]