These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 28323018)

  • 1. Modulation of auditory percepts by transcutaneous electrical stimulation.
    Ueberfuhr MA; Braun A; Wiegrebe L; Grothe B; Drexl M
    Hear Res; 2017 Jul; 350():235-243. PubMed ID: 28323018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitization to masked tones following notched-noise correlates with estimates of cochlear function using distortion product otoacoustic emissions.
    Zhou X; Henin S; Thompson SE; Long GR; Parra LC
    J Acoust Soc Am; 2010 Feb; 127(2):970-6. PubMed ID: 20136219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.
    Drexl M; Otto L; Wiegrebe L; Marquardt T; Gürkov R; Krause E
    Hear Res; 2016 Feb; 332():87-94. PubMed ID: 26706707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear.
    Kugler K; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):713-25. PubMed ID: 26264256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of three hours of discotheque music on pure-tone thresholds and distortion product otoacoustic emissions.
    Müller J; Dietrich S; Janssen T
    J Acoust Soc Am; 2010 Oct; 128(4):1853-69. PubMed ID: 20968358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of galvanic vestibular stimulation on distortion product otoacoustic emissions.
    Cevette MJ; Cocco D; Pradhan GN; Galea AM; Wagner LS; Oakley SR; Smith BE; Zapala DA; Brookler KH; Stepanek J
    J Vestib Res; 2012; 22(1):17-25. PubMed ID: 22699149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aftereffects of Intense Low-Frequency Sound on Spontaneous Otoacoustic Emissions: Effect of Frequency and Level.
    Jeanson L; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):111-119. PubMed ID: 27761740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of the Human Inner Ear to Low-Frequency Sound.
    Drexl M; Krause E; Gürkov R; Wiegrebe L
    Adv Exp Med Biol; 2016; 894():275-284. PubMed ID: 27080668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous otoacoustic emissions in neonates and effect of contralateral white noise stimulation.
    Franz B; Altidis P; Altidis B
    Int Tinnitus J; 2000; 6(2):168-71. PubMed ID: 14689637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of treatment with vincristine on transient evoked and distortion product otoacoustic emissions.
    Riga M; Psarommatis I; Korres S; Lyra Ch; Papadeas E; Varvutsi M; Ferekidis E; Apostolopoulos N
    Int J Pediatr Otorhinolaryngol; 2006 Jun; 70(6):1003-8. PubMed ID: 16359737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Otoacoustic emissions--a step closer to understanding cochlear function].
    Komazec Z; Milosević D; Filipović D; Dankuc D
    Med Pregl; 2001; 54(11-12):539-42. PubMed ID: 11921687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of distortion product otoacoustic emissions and pure tone audiometry in occupational screening for auditory deficit due to noise exposure.
    Wooles N; Mulheran M; Bray P; Brewster M; Banerjee AR
    J Laryngol Otol; 2015 Dec; 129(12):1174-81. PubMed ID: 26549131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple indices of the 'bounce' phenomenon obtained from the same human ears.
    Drexl M; Uberfuhr M; Weddell TD; Lukashkin AN; Wiegrebe L; Krause E; Gürkov R
    J Assoc Res Otolaryngol; 2014 Feb; 15(1):57-72. PubMed ID: 24253659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones.
    Bian L; Chen S
    J Acoust Soc Am; 2011 Feb; 129(2):828-39. PubMed ID: 21361441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous otoacoustic emission recordings during contralateral pure-tone activation of medial olivocochlear reflex.
    Bulut E; Öztürk L
    Physiol Int; 2017 Jun; 104(2):171-182. PubMed ID: 28648121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of distortion product otoacoustic emission and tinnitus in normal hearing patients: a pilot study.
    Modh D; Katarkar A; Alam N; Jain A; Shah P
    Noise Health; 2014; 16(69):69-72. PubMed ID: 24804709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acoustic stimuli used for vestibular evoked myogenic potential studies on the cochlear function.
    Krause E; Mayerhofer A; Gürkov R; Drexl M; Braun T; Olzowy B; Boetzel K
    Otol Neurotol; 2013 Sep; 34(7):1186-92. PubMed ID: 23921920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient evoked otoacoustic emissions after vestibular nerve section in chinchillas.
    Murao MS; Bento RF; Sanchez TG; Ribas GC
    Hear Res; 2006 Mar; 213(1-2):43-8. PubMed ID: 16497453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.