These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28323175)

  • 1. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.
    Martini R; Balit Y; Barthelat F
    Acta Biomater; 2017 Jun; 55():360-372. PubMed ID: 28323175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms.
    Chintapalli RK; Mirkhalaf M; Dastjerdi AK; Barthelat F
    Bioinspir Biomim; 2014 Sep; 9(3):036005. PubMed ID: 24613857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printing and mechanics of bio-inspired articulated and multi-material structures.
    Porter MM; Ravikumar N; Barthelat F; Martini R
    J Mech Behav Biomed Mater; 2017 Sep; 73():114-126. PubMed ID: 28131676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales.
    Martini R; Barthelat F
    Bioinspir Biomim; 2016 Oct; 11(6):066001. PubMed ID: 27736808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review.
    Rawat P; Zhu D; Rahman MZ; Barthelat F
    Acta Biomater; 2021 Feb; 121():41-67. PubMed ID: 33285327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs.
    Zhu D; Szewciw L; Vernerey F; Barthelat F
    J Mech Behav Biomed Mater; 2013 Aug; 24():30-40. PubMed ID: 23683758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.
    Szewciw L; Zhu D; Barthelat F
    J Mech Behav Biomed Mater; 2017 Dec; 76():97-103. PubMed ID: 28645510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of intermolecular bonding and lubrication to the mechanical behavior of a natural armor.
    Jiang H; Ghods S; Weller E; Waddell S; Ossa EA; Yang F; Arola D
    Acta Biomater; 2020 Apr; 106():242-255. PubMed ID: 32084601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.
    Funk N; Vera M; Szewciw LJ; Barthelat F; Stoykovich MP; Vernerey FJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5972-83. PubMed ID: 25723101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues.
    Browning A; Ortiz C; Boyce MC
    J Mech Behav Biomed Mater; 2013 Mar; 19():75-86. PubMed ID: 23517749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired buckling of scaled skins.
    Shafiei A; Pro JW; Barthelat F
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33930873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designed for resistance to puncture: The dynamic response of fish scales.
    Ghods S; Murcia S; Ossa EA; Arola D
    J Mech Behav Biomed Mater; 2019 Feb; 90():451-459. PubMed ID: 30448559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula.
    Sherman VR; Quan H; Yang W; Ritchie RO; Meyers MA
    J Mech Behav Biomed Mater; 2017 Sep; 73():1-16. PubMed ID: 27816416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphometric structural diversity of a natural armor assembly investigated by 2D continuum strain analysis.
    Varshney S; Song J; Li Y; Boyce MC; Ortiz C
    J Struct Biol; 2015 Dec; 192(3):487-499. PubMed ID: 26481418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired design of flexible armor based on chiton scales.
    Connors M; Yang T; Hosny A; Deng Z; Yazdandoost F; Massaadi H; Eernisse D; Mirzaeifar R; Dean MN; Weaver JC; Ortiz C; Li L
    Nat Commun; 2019 Dec; 10(1):5413. PubMed ID: 31822663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.
    de Obaldia EE; Jeong C; Grunenfelder LK; Kisailus D; Zavattieri P
    J Mech Behav Biomed Mater; 2015 Aug; 48():70-85. PubMed ID: 25913610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural flexible dermal armor.
    Yang W; Chen IH; Gludovatz B; Zimmermann EA; Ritchie RO; Meyers MA
    Adv Mater; 2013 Jan; 25(1):31-48. PubMed ID: 23161399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printing a 'family' of biomimetic models to explain armored grasping in syngnathid fishes.
    Porter MM; Ravikumar N
    Bioinspir Biomim; 2017 Nov; 12(6):066007. PubMed ID: 28749372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales.
    Wang B; Yang W; Sherman VR; Meyers MA
    Acta Biomater; 2016 Sep; 41():60-74. PubMed ID: 27221793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The limiting layer of fish scales: Structure and properties.
    Arola D; Murcia S; Stossel M; Pahuja R; Linley T; Devaraj A; Ramulu M; Ossa EA; Wang J
    Acta Biomater; 2018 Feb; 67():319-330. PubMed ID: 29248639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.