These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. Zhou CX; Zhu XQ; Elsheikha HM; He S; Li Q; Zhou DH; Suo X J Proteomics; 2016 Oct; 148():12-9. PubMed ID: 27422377 [TBL] [Abstract][Full Text] [Related]
5. Early Detection of Toxoplasma gondii Infection In Mongolian Gerbil By Quantitative Real-Time PCR. Dai F; Zhuo X; Kong Q; Du J; Yu H; Zhou S; Song X; Tong Q; Lou D; Lou Q; Lu L; Lv Y; Sa X; Lu S J Parasitol; 2019 Feb; 105(1):52-57. PubMed ID: 30807726 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Peptidomics of Mouse Brain After Infection With Cyst-Forming Zhou CX; Gao M; Han B; Cong H; Zhu XQ; Zhou HY Front Immunol; 2021; 12():681242. PubMed ID: 34367142 [No Abstract] [Full Text] [Related]
7. Comparative proteomic analysis of different Toxoplasma gondii genotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry. Zhou DH; Zhao FR; Nisbet AJ; Xu MJ; Song HQ; Lin RQ; Huang SY; Zhu XQ Electrophoresis; 2014 Feb; 35(4):533-45. PubMed ID: 24166805 [TBL] [Abstract][Full Text] [Related]
8. Galectin-3 and Galectin-9 May Differently Regulate the Expressions of Microglial M1/M2 Markers and T Helper 1/Th2 Cytokines in the Brains of Genetically Susceptible C57BL/6 and Resistant BALB/c Mice Following Peroral Infection With Liu J; Huang S; Lu F Front Immunol; 2018; 9():1648. PubMed ID: 30108583 [TBL] [Abstract][Full Text] [Related]
9. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection. Nie LB; Cong W; He JJ; Zheng WB; Zhu XQ Infect Dis Poverty; 2022 Sep; 11(1):96. PubMed ID: 36104766 [TBL] [Abstract][Full Text] [Related]
10. Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii. Zhou DH; Zhao FR; Huang SY; Xu MJ; Song HQ; Su C; Zhu XQ Parasit Vectors; 2013 Apr; 6():96. PubMed ID: 23587304 [TBL] [Abstract][Full Text] [Related]
11. Four Chemotherapeutic Compounds That Limit Blood-Brain-Barrier Invasion by Yan Z; Yuan H; Wang J; Yang Z; Zhang P; Mahmmod YS; Wang X; Liu T; Song Y; Ren Z; Zhang XX; Yuan ZG Molecules; 2022 Aug; 27(17):. PubMed ID: 36080339 [TBL] [Abstract][Full Text] [Related]
12. Dectin-1-CD37 association regulates IL-6 expression during Toxoplasma gondii infection. Yan J; Wu B; Huang B; Huang S; Jiang S; Lu F Parasitol Res; 2014 Aug; 113(8):2851-60. PubMed ID: 24870248 [TBL] [Abstract][Full Text] [Related]
13. Label-free proteomic analysis of placental proteins during Toxoplasma gondii infection. Jiao F; Zhang D; Jiang M; Mi J; Liu X; Zhang H; Hu Z; Xu X; Hu X J Proteomics; 2017 Jan; 150():31-39. PubMed ID: 27569050 [TBL] [Abstract][Full Text] [Related]
14. From inflammatory reactions to neurotransmitter changes: Implications for understanding the neurobehavioral changes in mice chronically infected with Toxoplasma gondii. Wang T; Sun X; Qin W; Zhang X; Wu L; Li Y; Zhou C; Zhou H; He S; Cong H Behav Brain Res; 2019 Feb; 359():737-748. PubMed ID: 30253194 [TBL] [Abstract][Full Text] [Related]
15. Chronic infection of Toxoplasma gondii downregulates miR-132 expression in multiple brain regions in a sex-dependent manner. Li YE; Kannan G; Pletnikov MV; Yolken RH; Xiao J Parasitology; 2015 Apr; 142(4):623-32. PubMed ID: 25351997 [TBL] [Abstract][Full Text] [Related]
16. Comparison of splenocyte microRNA expression profiles of pigs during acute and chronic toxoplasmosis. Hou Z; Liu D; Su S; Wang L; Zhao Z; Ma Y; Li Q; Jia C; Xu J; Zhou Y; Tao J BMC Genomics; 2019 Jan; 20(1):97. PubMed ID: 30700253 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice. Schlüter D; Deckert-Schlüter M; Lorenz E; Meyer T; Röllinghoff M; Bogdan C J Immunol; 1999 Mar; 162(6):3512-8. PubMed ID: 10092808 [TBL] [Abstract][Full Text] [Related]
18. 4D label-free proteomic analysis reveals key potential pathways of Toxoplasma invasion into the central nervous system. Ren Z; Yang Z; Yuan H; Song Y; He H; Nie L; Wang X; Yuan ZG; Zhang XX Int Immunopharmacol; 2024 Sep; 138():112618. PubMed ID: 38996663 [TBL] [Abstract][Full Text] [Related]
19. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. David CN; Frias ES; Szu JI; Vieira PA; Hubbard JA; Lovelace J; Michael M; Worth D; McGovern KE; Ethell IM; Stanley BG; Korzus E; Fiacco TA; Binder DK; Wilson EH PLoS Pathog; 2016 Jun; 12(6):e1005643. PubMed ID: 27281462 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Dincel GC; Atmaca HT Exp Parasitol; 2015 Sep; 156():104-12. PubMed ID: 26115941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]