BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28323279)

  • 1. Spontaneous mutations of a model heterotrophic marine bacterium.
    Sun Y; Powell KE; Sung W; Lynch M; Moran MA; Luo H
    ISME J; 2017 Jul; 11(7):1713-1718. PubMed ID: 28323279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model.
    Hellweger FL; Huang Y; Luo H
    ISME J; 2018 May; 12(5):1180-1187. PubMed ID: 29330536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae.
    Smith AF; Rihtman B; Stirrup R; Silvano E; Mausz MA; Scanlan DJ; Chen Y
    ISME J; 2019 Jan; 13(1):39-49. PubMed ID: 30108306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of divergent life history strategies in marine alphaproteobacteria.
    Luo H; Csuros M; Hughes AL; Moran MA
    mBio; 2013 Jul; 4(4):. PubMed ID: 23839216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3.
    Cunliffe M
    FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26613749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade.
    Christie-Oleza JA; Miotello G; Armengaud J
    BMC Genomics; 2012 Feb; 13():73. PubMed ID: 22336032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary analysis of a streamlined lineage of surface ocean Roseobacters.
    Luo H; Swan BK; Stepanauskas R; Hughes AL; Moran MA
    ISME J; 2014 Jul; 8(7):1428-39. PubMed ID: 24451207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino Acid and Sugar Catabolism in the Marine Bacterium Phaeobacter inhibens DSM 17395 from an Energetic Viewpoint.
    Wünsch D; Trautwein K; Scheve S; Hinrichs C; Feenders C; Blasius B; Schomburg D; Rabus R
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidomic Analysis of Roseobacters of the Pelagic RCA Cluster and Their Response to Phosphorus Limitation.
    Silvano E; Yang M; Wolterink M; Giebel HA; Simon M; Scanlan DJ; Zhao Y; Chen Y
    Front Microbiol; 2020; 11():552135. PubMed ID: 33408696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological Genomics of the Uncultivated Marine Roseobacter Lineage CHAB-I-5.
    Zhang Y; Sun Y; Jiao N; Stepanauskas R; Luo H
    Appl Environ Microbiol; 2016 Jan; 82(7):2100-2111. PubMed ID: 26826224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do divergent ecological strategies emerge among marine bacterioplankton lineages?
    Luo H; Moran MA
    Trends Microbiol; 2015 Sep; 23(9):577-84. PubMed ID: 26051014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome content of uncultivated marine Roseobacters in the surface ocean.
    Luo H; Löytynoja A; Moran MA
    Environ Microbiol; 2012 Jan; 14(1):41-51. PubMed ID: 21854517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Model
    Sharpe GC; Gifford SM; Septer AN
    mSystems; 2020 Aug; 5(4):. PubMed ID: 32788406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life.
    Thole S; Kalhoefer D; Voget S; Berger M; Engelhardt T; Liesegang H; Wollherr A; Kjelleberg S; Daniel R; Simon M; Thomas T; Brinkhoff T
    ISME J; 2012 Dec; 6(12):2229-44. PubMed ID: 22717884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats.
    Simon M; Scheuner C; Meier-Kolthoff JP; Brinkhoff T; Wagner-Döbler I; Ulbrich M; Klenk HP; Schomburg D; Petersen J; Göker M
    ISME J; 2017 Jun; 11(6):1483-1499. PubMed ID: 28106881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary ecology of the marine Roseobacter clade.
    Luo H; Moran MA
    Microbiol Mol Biol Rev; 2014 Dec; 78(4):573-87. PubMed ID: 25428935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to read the oceans genomics of marine phytoplankton.
    Rynearson TA; Palenik B
    Adv Mar Biol; 2011; 60():1-39. PubMed ID: 21962749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Heme Uptake by Phytoplankton-Associated
    Hogle SL; Brahamsha B; Barbeau KA
    mSystems; 2017; 2(1):. PubMed ID: 28083564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms driving genome reduction of a novel Roseobacter lineage.
    Feng X; Chu X; Qian Y; Henson MW; Lanclos VC; Qin F; Barnes S; Zhao Y; Thrash JC; Luo H
    ISME J; 2021 Dec; 15(12):3576-3586. PubMed ID: 34145391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.