These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28323304)

  • 1. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.
    Schwertner M; Booth MJ; Neil MA; Wilson T
    J Microsc; 2004 Jan; 213(1):11-9. PubMed ID: 14678508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope.
    Hussain SA; Kubo T; Hall N; Gala D; Hampson K; Parton R; Phillips MA; Wincott M; Fujita K; Davis I; Dobbie I; Booth MJ
    J Microsc; 2022 Nov; 288(2):106-116. PubMed ID: 33128278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.
    Dai GM; Campbell CE; Chen L; Zhao H; Chernyak D
    Appl Opt; 2009 Jan; 48(3):477-88. PubMed ID: 19151816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth polarisation resolved SHG microscopy in biological tissues using iterative wavefront optimisation.
    Nuzhdin D; Pendleton EG; Munger EB; Mortensen LJ; Brasselet S
    J Microsc; 2023 Jul; 291(1):57-72. PubMed ID: 36455264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.
    Shaw M; Hall S; Knox S; Stevens R; Paterson C
    Opt Express; 2010 Mar; 18(7):6900-13. PubMed ID: 20389710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive harmonic generation microscopy of mammalian embryos.
    Jesacher A; Thayil A; Grieve K; Débarre D; Watanabe T; Wilson T; Srinivas S; Booth M
    Opt Lett; 2009 Oct; 34(20):3154-6. PubMed ID: 19838257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based calibration of a deformable mirror in wide-field microscopy.
    Turaga D; Holy TE
    Appl Opt; 2010 Apr; 49(11):2030-40. PubMed ID: 20390001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ measurement of the isoplanatic patch for imaging through intact bone.
    Forouhesh Tehrani K; Koukourakis N; Czarske J; Mortensen LJ
    J Biophotonics; 2021 Jan; 14(1):e202000160. PubMed ID: 32844561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars.
    Tao X; Dean Z; Chien C; Azucena O; Bodington D; Kubby J
    Opt Express; 2013 Dec; 21(25):31282-92. PubMed ID: 24514702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
    Antonello J; van Werkhoven T; Verhaegen M; Truong HH; Keller CU; Gerritsen HC
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1337-47. PubMed ID: 24977374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy.
    Wright AJ; Burns D; Patterson BA; Poland SP; Valentine GJ; Girkin JM
    Microsc Res Tech; 2005 May; 67(1):36-44. PubMed ID: 16025475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.
    Tang J; Germain RN; Cui M
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8434-9. PubMed ID: 22586078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping.
    Qin Z; She Z; Chen C; Wu W; Lau JKY; Ip NY; Qu JY
    Nat Biotechnol; 2022 Nov; 40(11):1663-1671. PubMed ID: 35697805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-transmitter aperture synthesis with Zernike based aberration correction.
    Gunturk BK; Rabb DJ; Jameson DF
    Opt Express; 2012 Nov; 20(24):26448-57. PubMed ID: 23187499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.