These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28323348)

  • 1. Differences in flexor and extensor activity during locomotor-related leg movements in chick embryos.
    Sun SY; Bradley NS
    Dev Psychobiol; 2017 Apr; 59(3):357-366. PubMed ID: 28323348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ankle muscle tenotomy does not alter ankle flexor muscle recruitment bias during locomotor-related repetitive limb movement in late-stage chick embryos.
    Sun SY; Baker LL; Bradley NS
    Dev Psychobiol; 2018 Mar; 60(2):150-164. PubMed ID: 29193030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles.
    Bradley NS; Ryu YU; Yeseta MC
    J Exp Biol; 2014 Mar; 217(Pt 6):896-907. PubMed ID: 24265423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precocious locomotor behavior begins in the egg: development of leg muscle patterns for stepping in the chick.
    Ryu YU; Bradley NS
    PLoS One; 2009 Jul; 4(7):e6111. PubMed ID: 19578536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast locomotor burst generation in late stage embryonic motility.
    Bradley NS; Ryu YU; Lin J
    J Neurophysiol; 2008 Apr; 99(4):1733-42. PubMed ID: 18272869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left-Right Locomotor Coordination in Human Neonates.
    Dewolf AH; La Scaleia V; Fabiano A; Sylos-Labini F; Mondi V; Picone S; Di Paolo A; Paolillo P; Ivanenko Y; Lacquaniti F
    J Neurosci; 2022 Aug; 42(34):6566-6580. PubMed ID: 35831172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
    Buford JA; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):756-66. PubMed ID: 2230922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected motor patterns for hindlimb muscles during slope walking in the cat.
    Smith JL; Carlson-Kuhta P
    J Neurophysiol; 1995 Nov; 74(5):2211-5. PubMed ID: 8592212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats.
    Pearson KG; Ramirez JM; Jiang W
    Exp Brain Res; 1992; 90(3):557-66. PubMed ID: 1426112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor patterns of distal hind limb muscles in walking turtles: Implications for models of limb bone loading.
    Schoenfuss HL; Roos JD; Rivera AR; Blob RW
    J Morphol; 2010 Dec; 271(12):1527-36. PubMed ID: 20967829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.
    Hiebert GW; Whelan PJ; Prochazka A; Pearson KG
    J Neurophysiol; 1996 Mar; 75(3):1126-37. PubMed ID: 8867123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the reflex coactivation of ankle flexor and extensor muscles induced by a sudden drop of support surface during walking in humans.
    Nakazawa K; Kawashima N; Akai M; Yano H
    J Appl Physiol (1985); 2004 Feb; 96(2):604-11. PubMed ID: 14527965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated motor output in the hindlimb of the 7-day chick embryo.
    Bekoff A; Stein PS; Hamburger V
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1245-8. PubMed ID: 1055400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.
    Carlson-Kuhta P; Trank TV; Smith JL
    J Neurophysiol; 1998 Apr; 79(4):1687-701. PubMed ID: 9535939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking.
    Smith JL; Carlson-Kuhta P; Trank TV
    J Neurophysiol; 1998 Apr; 79(4):1702-16. PubMed ID: 9535940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic activity patterns of ankle flexor and extensor muscles during spontaneous and L-DOPA-induced locomotion in freely moving neonatal rats.
    Navarrete R; Slawińska U; Vrbová G
    Exp Neurol; 2002 Feb; 173(2):256-65. PubMed ID: 11822889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.