These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 28323483)
1. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples. Potter-McIntyre SL; Williams J; Phillips-Lander C; O'Connell L Astrobiology; 2017 Mar; 17(3):216-230. PubMed ID: 28323483 [TBL] [Abstract][Full Text] [Related]
2. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater. Potter-McIntyre SL; Chan MA; McPherson BJ Astrobiology; 2014 Jan; 14(1):1-14. PubMed ID: 24380534 [TBL] [Abstract][Full Text] [Related]
3. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Campbell KA; Lynne BY; Handley KM; Jordan S; Farmer JD; Guido DM; Foucher F; Turner S; Perry RS Astrobiology; 2015 Oct; 15(10):858-82. PubMed ID: 26496526 [TBL] [Abstract][Full Text] [Related]
4. Stable Isotope Fractionation in a Cold Spring System, Utah, USA: Insights for Sample Selection on Mars. Knuth JM; Potter-McIntyre SL Astrobiology; 2021 Feb; 21(2):235-245. PubMed ID: 33021813 [TBL] [Abstract][Full Text] [Related]
5. Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment. Guido DM; Campbell KA Astrobiology; 2019 Dec; 19(12):1433-1441. PubMed ID: 31059288 [TBL] [Abstract][Full Text] [Related]
6. Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. Walter MR; Des Marais DJ Icarus; 1993 Jan; 101(1):129-43. PubMed ID: 11536937 [TBL] [Abstract][Full Text] [Related]
7. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California. Williams AJ; Sumner DY; Alpers CN; Karunatillake S; Hofmann BA Astrobiology; 2015 Aug; 15(8):637-68. PubMed ID: 26247371 [TBL] [Abstract][Full Text] [Related]
8. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. Sun VZ; Milliken RE Astrobiology; 2020 Apr; 20(4):453-474. PubMed ID: 31545076 [TBL] [Abstract][Full Text] [Related]
9. Hot Spring Microbial Community Elemental Composition: Hot Spring and Soil Inputs, and the Transition from Biocumulus to Siliceous Sinter. Havig JR; Kuether JE; Gangidine AJ; Schroeder S; Hamilton TL Astrobiology; 2021 Dec; 21(12):1526-1546. PubMed ID: 34889663 [TBL] [Abstract][Full Text] [Related]
10. Terrestrial Hot Spring Systems: Introduction. Des Marais DJ; Walter MR Astrobiology; 2019 Dec; 19(12):1419-1432. PubMed ID: 31424278 [TBL] [Abstract][Full Text] [Related]
11. Trace Element Concentrations Associated with Mid-Paleozoic Microfossils as Biosignatures to Aid in the Search for Life. Gangidine A; Walter MR; Havig JR; Jones C; Sturmer DM; Czaja AD Life (Basel); 2021 Feb; 11(2):. PubMed ID: 33668639 [TBL] [Abstract][Full Text] [Related]
12. Trace Element Concentrations in Hydrothermal Silica Deposits as a Potential Biosignature. Gangidine A; Havig JR; Fike DA; Jones C; Hamilton TL; Czaja AD Astrobiology; 2020 Apr; 20(4):525-536. PubMed ID: 31859527 [TBL] [Abstract][Full Text] [Related]
13. A Reconstructed Subaerial Hot Spring Field in the ∼3.5 Billion-Year-Old Dresser Formation, North Pole Dome, Pilbara Craton, Western Australia. Djokic T; Van Kranendonk MJ; Campbell KA; Havig JR; Walter MR; Guido DM Astrobiology; 2021 Jan; 21(1):1-38. PubMed ID: 33270491 [TBL] [Abstract][Full Text] [Related]
14. Exploring for a record of ancient Martian life. Farmer JD; Des Marais DJ J Geophys Res; 1999 Nov; 104(E11):26977-95. PubMed ID: 11543200 [TBL] [Abstract][Full Text] [Related]
15. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Allwood AC; Burch IW; Rouchy JM; Coleman M Astrobiology; 2013 Sep; 13(9):870-86. PubMed ID: 24047112 [TBL] [Abstract][Full Text] [Related]
16. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Gong J; Myers KD; Munoz-Saez C; Homann M; Rouillard J; Wirth R; Schreiber A; van Zuilen MA Astrobiology; 2020 Apr; 20(4):500-524. PubMed ID: 31663774 [TBL] [Abstract][Full Text] [Related]
17. Microbial Ecology of an Arctic Travertine Geothermal Spring: Implications for Biosignature Preservation and Astrobiology. Ugwuanyi IR; Steele A; Glamoclija M Astrobiology; 2024 Jul; 24(7):734-753. PubMed ID: 38985714 [TBL] [Abstract][Full Text] [Related]
18. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. Moore KR; Daye M; Gong J; Williford K; Konhauser K; Bosak T Geobiology; 2023 Jan; 21(1):3-27. PubMed ID: 36268586 [TBL] [Abstract][Full Text] [Related]
19. Genetic Biosignatures of Deep-Subsurface Organisms Preserved in Carbonates Over a 100,000 Year Timescale at a Surface-Accessible Mars Analog Site in Southeastern Utah. Pierce MP; Brazelton WJ Astrobiology; 2023 Sep; 23(9):979-990. PubMed ID: 37594859 [TBL] [Abstract][Full Text] [Related]
20. Biomolecules from Fossilized Hot Spring Sinters: Implications for the Search for Life on Mars. Teece BL; George SC; Djokic T; Campbell KA; Ruff SW; Van Kranendonk MJ Astrobiology; 2020 Apr; 20(4):537-551. PubMed ID: 32155343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]