These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2832351)

  • 1. Investigation of the biochemical state of paramagnetic ions in vivo using the magnetic field dependence of 1/T1 of tissue protons (NMRD profile): applications to contrast agents for magnetic resonance imaging.
    Koenig SH; Spiller M; Brown RD; Wolf GL
    Int J Rad Appl Instrum B; 1988; 15(1):23-9. PubMed ID: 2832351
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic field dependence (NMRD profile) of 1/T1 of rabbit kidney medulla and urine after intravenous injection of Gd(DTPA).
    Koenig SH; Spiller M; Brown RD; Wolf GL
    Invest Radiol; 1986 Sep; 21(9):697-704. PubMed ID: 3771156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal proton relaxation rates in rabbit tissues after intravenous injection of free and chelated Mn2+.
    Spiller M; Brown RD; Koenig SH; Wolf GL
    Magn Reson Med; 1988 Nov; 8(3):293-313. PubMed ID: 2849704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles.
    Koenig SH; Kellar KE
    Magn Reson Med; 1995 Aug; 34(2):227-33. PubMed ID: 7476082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic field dependence of proton relaxation rates in tissue with added Mn2+: rabbit liver and kidney.
    Koenig SH; Brown RD; Goldstein EJ; Burnett KR; Wolf GL
    Magn Reson Med; 1985 Apr; 2(2):159-68. PubMed ID: 3938510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeability of liposomal membranes to water: results from the magnetic field dependence of T1 of solvent protons in suspensions of vesicles with entrapped paramagnetic ions.
    Koenig SH; Ahkong QF; Brown RD; Lafleur M; Spiller M; Unger E; Tilcock C
    Magn Reson Med; 1992 Feb; 23(2):275-86. PubMed ID: 1549042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat.
    Shuter B; Tofts PS; Wang SC; Pope JM
    Magn Reson Imaging; 1996; 14(3):243-53. PubMed ID: 8725190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI contrast agents: Classification and application (Review).
    Xiao YD; Paudel R; Liu J; Ma C; Zhang ZS; Zhou SK
    Int J Mol Med; 2016 Nov; 38(5):1319-1326. PubMed ID: 27666161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes.
    Kellar KE; Fossheim SL; Koenig SH
    Invest Radiol; 1998 Nov; 33(11):835-40. PubMed ID: 9818318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of solvent protons by paramagnetic ions and its dependence on magnetic field and chemical environment: implications for NMR imaging.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):478-95. PubMed ID: 6571571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes.
    Koenig SH; Baglin C; Brown RD; Brewer CF
    Magn Reson Med; 1984 Dec; 1(4):496-501. PubMed ID: 6443784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hepatobiliary gadolinium chelates for magnetic resonance imaging.
    Runge VM; Wells JW
    Acad Radiol; 1996 Aug; 3 Suppl 2():S455-7. PubMed ID: 8796628
    [No Abstract]   [Full Text] [Related]  

  • 13. NMRD assessment of Gd-DTPA-bis(methoxyethylamide), (Gd-DTPA-BMEA), a nonionic MRI agent.
    Adzamli K; Periasamy MP; Spiller M; Koenig SH
    Invest Radiol; 1999 Jun; 34(6):410-4. PubMed ID: 10353033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of water-soluble metallofullerenes as MRI contrast agents.
    Okumura M; Mikawa M; Yokawa T; Kanazawa Y; Kato H; Shinohara H
    Acad Radiol; 2002 Aug; 9 Suppl 2():S495-7. PubMed ID: 12188319
    [No Abstract]   [Full Text] [Related]  

  • 15. Determinants of proton relaxation rates in tissue.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):437-49. PubMed ID: 6100933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents.
    Laurent S; Elst LV; Muller RN
    Contrast Media Mol Imaging; 2006; 1(3):128-37. PubMed ID: 17193689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal handling and physiologic effects of the paramagnetic contrast medium, gadolinium-DOTA.
    Katzberg RW; Sahler LG; Duda SW; Morris TW; McKenna BA; Pabico RC; Niedrach WL; Tonetti FW
    Invest Radiol; 1991 Nov; 26 Suppl 1():S129-30; discussion S137-8. PubMed ID: 1808108
    [No Abstract]   [Full Text] [Related]  

  • 18. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents.
    Mikawa M; Kato H; Okumura M; Narazaki M; Kanazawa Y; Miwa N; Shinohara H
    Bioconjug Chem; 2001; 12(4):510-4. PubMed ID: 11459454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of gadolinium 2,5-BPA-DO3A, a new macrocyclic hepatobiliary chelate, in normal liver and metastatic disease on high field magnetic resonance imaging.
    Runge VM; Wells JW; Williams NM
    Invest Radiol; 1996 Jan; 31(1):11-6. PubMed ID: 8850360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite.
    Gillis P; Koenig SH
    Magn Reson Med; 1987 Oct; 5(4):323-45. PubMed ID: 2824967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.