These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28323639)

  • 1. The effect of boundary slippage and nonlinear rheological response on flow of nanoconfined water.
    Sekhon A; Ajith VJ; Patil S
    J Phys Condens Matter; 2017 May; 29(20):205101. PubMed ID: 28323639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity and shear thinning of nanoconfined water.
    Kapoor K; Amandeep ; Patil S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013004. PubMed ID: 24580317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interplay between apparent viscosity and wettability in nanoconfined water.
    Ortiz-Young D; Chiu HC; Kim S; Voïtchovsky K; Riedo E
    Nat Commun; 2013; 4():2482. PubMed ID: 24052015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanohydrodynamics: the intrinsic flow boundary condition on smooth surfaces.
    Cottin-Bizonne C; Steinberger A; Cross B; Raccurt O; Charlaix E
    Langmuir; 2008 Feb; 24(4):1165-72. PubMed ID: 18266337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall.
    Patlazhan S; Vagner S
    Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of Water Flows Confined between Multilayer Graphene Walls.
    Li F; Korotkin IA; Karabasov SA
    Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear dynamics of hydration layers.
    Leng Y; Cummings PT
    J Chem Phys; 2006 Sep; 125(10):104701. PubMed ID: 16999542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics of capillary imbibition under nanoconfinement.
    Stroberg W; Keten S; Liu WK
    Langmuir; 2012 Oct; 28(40):14488-95. PubMed ID: 22931154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching fluid slippage on pH-responsive superhydrophobic surfaces.
    Wu Y; Liu Z; Liang Y; Pei X; Zhou F; Xue Q
    Langmuir; 2014 Jun; 30(22):6463-8. PubMed ID: 24845303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous interplay of slip, shear and wettability in nanoconfined water.
    Bakli C; Chakraborty S
    Nanoscale; 2019 Jun; 11(23):11254-11261. PubMed ID: 31162505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peristaltic transport of Carreau-Yasuda fluid in a curved channel with slip effects.
    Hayat T; Abbasi FM; Ahmad B; Alsaedi A
    PLoS One; 2014; 9(4):e95070. PubMed ID: 24736320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of shear-dependent boundary slip in Newtonian liquids.
    Neto C; Craig VS; Williams DR
    Eur Phys J E Soft Matter; 2003 Nov; 12 Suppl 1():S71-4. PubMed ID: 15011020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheology and morphology of no-slip sheared polymer nanocomposite under creep condition.
    Mortezapour S; Eslami H; Nedaaee Oskoee E
    J Chem Phys; 2015 Jul; 143(3):034901. PubMed ID: 26203043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids.
    Sun K; Wang T; Zhang P; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023009. PubMed ID: 25768599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slippage of Newtonian liquids: influence on the dynamics of dewetting thin films.
    Fetzer R; Jacobs K
    Langmuir; 2007 Nov; 23(23):11617-22. PubMed ID: 17918979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
    Pan Y; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2014; 5():1042-65. PubMed ID: 25161839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.