These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 28323821)
1. Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions. Dipasquale O; Sethi A; Laganà MM; Baglio F; Baselli G; Kundu P; Harrison NA; Cercignani M PLoS One; 2017; 12(3):e0173289. PubMed ID: 28323821 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990 [TBL] [Abstract][Full Text] [Related]
3. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
4. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991 [TBL] [Abstract][Full Text] [Related]
5. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
6. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
7. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR). Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516 [TBL] [Abstract][Full Text] [Related]
8. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
9. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T. Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723 [TBL] [Abstract][Full Text] [Related]
10. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. Kundu P; Voon V; Balchandani P; Lombardo MV; Poser BA; Bandettini PA Neuroimage; 2017 Jul; 154():59-80. PubMed ID: 28363836 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI. Steel A; Garcia BD; Silson EH; Robertson CE Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274 [TBL] [Abstract][Full Text] [Related]
12. Characterising resting-state functional connectivity in a large sample of adults with ADHD. Mostert JC; Shumskaya E; Mennes M; Onnink AM; Hoogman M; Kan CC; Arias Vasquez A; Buitelaar J; Franke B; Norris DG Prog Neuropsychopharmacol Biol Psychiatry; 2016 Jun; 67():82-91. PubMed ID: 26825495 [TBL] [Abstract][Full Text] [Related]
13. Enhanced identification of BOLD-like components with multi-echo simultaneous multi-slice (MESMS) fMRI and multi-echo ICA. Olafsson V; Kundu P; Wong EC; Bandettini PA; Liu TT Neuroimage; 2015 May; 112():43-51. PubMed ID: 25743045 [TBL] [Abstract][Full Text] [Related]
14. Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer's disease. Griffanti L; Dipasquale O; Laganà MM; Nemni R; Clerici M; Smith SM; Baselli G; Baglio F Front Hum Neurosci; 2015; 9():449. PubMed ID: 26321937 [TBL] [Abstract][Full Text] [Related]
15. Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity. Cohen AD; Chang C; Wang Y Neuroimage; 2021 Nov; 243():118555. PubMed ID: 34492293 [TBL] [Abstract][Full Text] [Related]
16. Test-Retest Reproducibility of the Intrinsic Default Mode Network: Influence of Functional Magnetic Resonance Imaging Slice-Order Acquisition and Head-Motion Correction Methods. Marchitelli R; Collignon O; Jovicich J Brain Connect; 2017 Mar; 7(2):69-83. PubMed ID: 28084793 [TBL] [Abstract][Full Text] [Related]
17. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity. Cohen AD; Nencka AS; Lebel RM; Wang Y PLoS One; 2017; 12(3):e0169253. PubMed ID: 28253268 [TBL] [Abstract][Full Text] [Related]
18. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion. Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436 [TBL] [Abstract][Full Text] [Related]
19. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T. Boyacioğlu R; Schulz J; Koopmans PJ; Barth M; Norris DG Neuroimage; 2015 Oct; 119():352-61. PubMed ID: 26162554 [TBL] [Abstract][Full Text] [Related]
20. Robust Correlation for Link Definition in Resting-State fMRI Brain Networks Can Reduce Motion-Related Artifacts. Burkhardt M; Thiel CM; Gießing C Brain Connect; 2022 Feb; 12(1):18-25. PubMed ID: 34269612 [No Abstract] [Full Text] [Related] [Next] [New Search]