BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2832387)

  • 1. Variation in the ability of Pseudomonas sp. strain B13 cultures to utilize meta-chlorobenzoate is associated with tandem amplification and deamplification of DNA.
    Rangnekar VM
    J Bacteriol; 1988 Apr; 170(4):1907-12. PubMed ID: 2832387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.
    Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ
    J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13.
    Weisshaar MP; Franklin FC; Reineke W
    J Bacteriol; 1987 Jan; 169(1):394-402. PubMed ID: 3025183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. Strain B13.
    Ravatn R; Studer S; Springael D; Zehnder AJ; van der Meer JR
    J Bacteriol; 1998 Sep; 180(17):4360-9. PubMed ID: 9721270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic homology between independently isolated chlorobenzoate-degradative plasmids.
    Chatterjee DK; Chakrabarty AM
    J Bacteriol; 1983 Jan; 153(1):532-4. PubMed ID: 6294059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates.
    Francisco P; Ogawa N; Suzuki K; Miyashita K
    Microbiology (Reading); 2001 Jan; 147(Pt 1):121-33. PubMed ID: 11160806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer.
    Thiem SM; Krumme ML; Smith RL; Tiedje JM
    Appl Environ Microbiol; 1994 Apr; 60(4):1059-67. PubMed ID: 7912498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate.
    Savard P; Péloquin L; Sylvestre M
    J Bacteriol; 1986 Oct; 168(1):81-5. PubMed ID: 3759912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit.
    McClure NC; Fry JC; Weightman AJ
    Appl Environ Microbiol; 1991 Feb; 57(2):366-73. PubMed ID: 2014987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of minimum substrate concentration (Smin) in a recycling fermentor and its prediction from the kinetic parameters of Pseudomonas strain B13 from batch and chemostat cultures.
    Tros ME; Bosma TN; Schraa G; Zehnder AJ
    Appl Environ Microbiol; 1996 Oct; 62(10):3655-61. PubMed ID: 8967775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium.
    Nielsen AT; Tolker-Nielsen T; Barken KB; Molin S
    Environ Microbiol; 2000 Feb; 2(1):59-68. PubMed ID: 11243263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp.
    Vora KA; Modi VV
    Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction mapping of a chlorobenzoate degradative plasmid and molecular cloning of the degradative genes.
    Chatterjee DK; Chakrabarty AM
    Gene; 1984 Feb; 27(2):173-81. PubMed ID: 6327465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture.
    Genthner BR; Townsend GT; Blattmann BO
    Appl Environ Microbiol; 1997 Dec; 63(12):4698-703. PubMed ID: 9471962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium.
    Häggblom MM; Young LY
    Arch Microbiol; 1999 Mar; 171(4):230-6. PubMed ID: 10339806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil.
    Focht DD; Shelton D
    Appl Environ Microbiol; 1987 Aug; 53(8):1846-9. PubMed ID: 3662518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene transfer from a bacterium injected into an aquifer to an indigenous bacterium.
    Zhou JZ; Tiedje JM
    Mol Ecol; 1995 Oct; 4(5):613-8. PubMed ID: 7582169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and genetic studies on degradation of chlorobenzoates by Pseudomonas.
    Singh H; Kahlon RS
    Acta Microbiol Pol; 1989; 38(3-4):259-69. PubMed ID: 2484743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous degradation of chloro- and methyl-substituted aromatic compounds: competition between Pseudomonas strains using the ortho and meta pathway or the ortho pathway exclusively.
    Franck-Mokross AC; Schmidt E
    Appl Microbiol Biotechnol; 1998 Aug; 50(2):233-40. PubMed ID: 9840960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.