BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 28324172)

  • 1. Enzymes involved in branched-chain amino acid metabolism in humans.
    Adeva-Andany MM; López-Maside L; Donapetry-García C; Fernández-Fernández C; Sixto-Leal C
    Amino Acids; 2017 Jun; 49(6):1005-1028. PubMed ID: 28324172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats.
    Aftring RP; Manos PN; Buse MG
    Metabolism; 1985 Aug; 34(8):702-11. PubMed ID: 4021802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic analysis reveals evidence for branched chain amino acid catabolism crosstalk and the potential for improved treatment of organic acidurias.
    McCalley S; Pirman D; Clasquin M; Johnson K; Jin S; Vockley J
    Mol Genet Metab; 2019; 128(1-2):57-61. PubMed ID: 31133529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis.
    Taylor NL; Heazlewood JL; Day DA; Millar AH
    Plant Physiol; 2004 Feb; 134(2):838-48. PubMed ID: 14764908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of mitochondrial transamination in branched chain amino acid metabolism.
    Hutson SM; Fenstermacher D; Mahar C
    J Biol Chem; 1988 Mar; 263(8):3618-25. PubMed ID: 3346211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.
    Crown SB; Marze N; Antoniewicz MR
    PLoS One; 2015; 10(12):e0145850. PubMed ID: 26710334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of alpha-ketoacid dehydrogenase phosphorylation on branched-chain amino acid metabolism in muscle.
    Hood DA; Terjung RL
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E628-34. PubMed ID: 1951688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes?
    Holeček M
    Nutrients; 2020 Oct; 12(10):. PubMed ID: 33050579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria.
    Latimer S; Li Y; Nguyen TTH; Soubeyrand E; Fatihi A; Elowsky CG; Block A; Pichersky E; Basset GJ
    Plant J; 2018 Jul; 95(2):358-370. PubMed ID: 29742810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. I. Regulation of branched chain alpha-ketoacid metabolism.
    Williamson JR; Wałajtys-Rode E; Coll KE
    J Biol Chem; 1979 Nov; 254(22):11511-20. PubMed ID: 500655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism.
    Liu X; Wu L; Deng G; Chen G; Li N; Chu X; Li D
    Bioorg Chem; 2013 Apr; 47():1-8. PubMed ID: 23474214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway.
    Luís PB; Ruiter JP; Ijlst L; Tavares de Almeida I; Duran M; Mohsen AW; Vockley J; Wanders RJ; Silva MF
    Drug Metab Dispos; 2011 Jul; 39(7):1155-60. PubMed ID: 21430231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between valproate and branched-chain amino acid metabolism.
    Anderson GD; Acheampong AA; Levy RH
    Neurology; 1994 Apr; 44(4):742-4. PubMed ID: 8164835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases.
    Holeček M
    Physiol Res; 2021 Jul; 70(3):293-305. PubMed ID: 33982576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus.
    Frank MW; Whaley SG; Rock CO
    J Biol Chem; 2021 Nov; 297(5):101255. PubMed ID: 34592315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched-chain amino acid metabolism.
    Harper AE; Miller RH; Block KP
    Annu Rev Nutr; 1984; 4():409-54. PubMed ID: 6380539
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD; Sokatch JR
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida.
    Conrad RS; Massey LK; Sokatch JR
    J Bacteriol; 1974 Apr; 118(1):103-11. PubMed ID: 4150713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.