These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28324189)

  • 41. Global stability for a 2n+1 dimensional HIV/AIDS epidemic model with treatments.
    Otunuga OM
    Math Biosci; 2018 May; 299():138-152. PubMed ID: 29550300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time growth rate for general stochastic SIR epidemics on unclustered networks.
    Pellis L; Spencer SE; House T
    Math Biosci; 2015 Jul; 265():65-81. PubMed ID: 25916891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks.
    Sun M; Liu Q
    Math Biosci Eng; 2021 Aug; 18(5):6790-6805. PubMed ID: 34517557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Hybrid Incidence Susceptible-Transmissible-Removed Model for Pandemics : Scaling Time to Predict an Epidemic's Population Density Dependent Temporal Propagation.
    Benjamin RL
    Acta Biotheor; 2022 Jan; 70(1):10. PubMed ID: 35092515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An epidemic model with noisy parameters.
    Roberts MG
    Math Biosci; 2017 May; 287():36-41. PubMed ID: 27521805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discrete stochastic analogs of Erlang epidemic models.
    Getz WM; Dougherty ER
    J Biol Dyn; 2018 Dec; 12(1):16-38. PubMed ID: 29157162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SEIRS epidemics with disease fatalities in growing populations.
    Britton T; Ouédraogo D
    Math Biosci; 2018 Feb; 296():45-59. PubMed ID: 29155133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The economic value of R
    Janssen K; Bijma P
    Genet Sel Evol; 2020 Jan; 52(1):3. PubMed ID: 32005099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On time-discretized versions of the stochastic SIS epidemic model: a comparative analysis.
    Gómez-Corral A; López-García M; Rodríguez-Bernal MT
    J Math Biol; 2021 Apr; 82(5):46. PubMed ID: 33813610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A stochastic mathematical model of two different infectious epidemic under vertical transmission.
    Wang X; Huang C; Hao Y; Shi Q
    Math Biosci Eng; 2022 Jan; 19(3):2179-2192. PubMed ID: 35240780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating the basic reproduction number from surveillance data on past epidemics.
    Froda S; Leduc H
    Math Biosci; 2014 Oct; 256():89-101. PubMed ID: 25168169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Role of Hyalomma Truncatum on the Dynamics of Rift Valley Fever: Insights from a Mathematical Epidemic Model.
    Pedro SA; Abelman S; Tonnang HE
    Acta Biotheor; 2017 Mar; 65(1):1-36. PubMed ID: 27515276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels.
    Wang X; Hardcastle K; Weinberg SH; Smith GD
    Acta Biotheor; 2016 Mar; 64(1):11-32. PubMed ID: 26424585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on the basic reproduction number in stochastic epidemic models with random perturbations.
    Ríos-Gutiérrez A; Torres S; Arunachalam V
    Adv Differ Equ; 2021; 2021(1):288. PubMed ID: 34149835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of low and high pathogenic avian influenza in wild and domestic bird populations.
    Tuncer N; Torres J; Martcheva M; Barfield M; Holt RD
    J Biol Dyn; 2016; 10():104-39. PubMed ID: 26667351
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age structured discrete-time disease models with demographic population cycles.
    van den Driessche P; Yakubu AA
    J Biol Dyn; 2020 Dec; 14(1):308-331. PubMed ID: 32301682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stochastic comparisons of mixtures of parametric families in stochastic epidemics.
    Ortega EM; Alonso J; Ortega I
    Math Biosci; 2013 May; 243(1):18-27. PubMed ID: 23357286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intervention to maximise the probability of epidemic fade-out.
    Ballard PG; Bean NG; Ross JV
    Math Biosci; 2017 Nov; 293():1-10. PubMed ID: 28804021
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SIR-SVS epidemic models with continuous and impulsive vaccination strategies.
    Li J; Yang Y
    J Theor Biol; 2011 Jul; 280(1):108-16. PubMed ID: 21477598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control.
    Liu S; Bi Y; Liu Y
    Theor Biol Med Model; 2020 May; 17(1):6. PubMed ID: 32362279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.