These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28324242)
1. Numerical insights into the phase diagram of p-atic membranes with spherical topology. Hansen AG; Ramakrishnan N; Sunil Kumar PB; Ipsen JH Eur Phys J E Soft Matter; 2017 Mar; 40(3):32. PubMed ID: 28324242 [TBL] [Abstract][Full Text] [Related]
2. The tension of framed membranes from computer simulations. Hamkens D; Jeppesen C; Ipsen JH Eur Phys J E Soft Matter; 2018 Mar; 41(3):42. PubMed ID: 29589130 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo simulations of branched polymer surfaces without bending elasticity. Koibuchi H; Nidaira A; Morita T; Suzuki K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011804. PubMed ID: 12935168 [TBL] [Abstract][Full Text] [Related]
4. Phase diagram of two-dimensional polar condensates in a magnetic field. James AJ; Lamacraft A Phys Rev Lett; 2011 Apr; 106(14):140402. PubMed ID: 21561170 [TBL] [Abstract][Full Text] [Related]
5. Universal behavior of crystalline membranes: Crumpling transition and Poisson ratio of the flat phase. Cuerno R; Gallardo Caballero R; Gordillo-Guerrero A; Monroy P; Ruiz-Lorenzo JJ Phys Rev E; 2016 Feb; 93(2):022111. PubMed ID: 26986292 [TBL] [Abstract][Full Text] [Related]
6. First-order phase transition of fixed connectivity surfaces. Koibuchi H; Kusano N; Nidaira A; Suzuki K; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066139. PubMed ID: 15244699 [TBL] [Abstract][Full Text] [Related]
7. New ordered phases in a class of generalized XY models. Poderoso FC; Arenzon JJ; Levin Y Phys Rev Lett; 2011 Feb; 106(6):067202. PubMed ID: 21405491 [TBL] [Abstract][Full Text] [Related]
8. Phase diagram for a two-dimensional, two-temperature, diffusive XY model. Reichl MD; Del Genio CI; Bassler KE Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):040102. PubMed ID: 21230222 [TBL] [Abstract][Full Text] [Related]
9. Computer simulations of a two-dimensional system with competing interactions. Stoycheva AD; Singer SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036706. PubMed ID: 11909306 [TBL] [Abstract][Full Text] [Related]
10. The crumpling transition of active tethered membranes. Gandikota MC; Cacciuto A Soft Matter; 2023 Jul; 19(28):5328-5335. PubMed ID: 37403812 [TBL] [Abstract][Full Text] [Related]
11. Structure and phase behaviour of diblock copolymer monolayers investigated by means of Monte Carlo simulation. Słyk E; Rżysko W; Bryk P J Phys Condens Matter; 2015 Oct; 27(41):415101. PubMed ID: 26414501 [TBL] [Abstract][Full Text] [Related]
12. The conformation of fluid membranes: Monte Carlo simulations. Kroll DM; Gompper G Science; 1992 Feb; 255(5047):968-71. PubMed ID: 1546294 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of block copolymers on solid surfaces: A Monte Carlo study. Słyk E; Rżysko W; Bryk P J Chem Phys; 2014 Jul; 141(4):044910. PubMed ID: 25084959 [TBL] [Abstract][Full Text] [Related]
14. Edwards's statistical mechanics of crumpling networks in crushed self-avoiding sheets with finite bending rigidity. Balankin AS; Flores-Cano L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032109. PubMed ID: 25871056 [TBL] [Abstract][Full Text] [Related]
15. Non-Kosterlitz-Thouless transitions for the q-state clock models. Baek SK; Minnhagen P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031102. PubMed ID: 21230020 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium relaxation analysis of Kosterlitz-Thouless phase transition. Ozeki Y; Ogawa K; Ito N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026702. PubMed ID: 12636849 [TBL] [Abstract][Full Text] [Related]
17. Discrete elastic model for two-dimensional melting. Lansac Y; Glaser MA; Clark NA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041501. PubMed ID: 16711803 [TBL] [Abstract][Full Text] [Related]
18. Columnar-disorder phase boundary in a mixture of hard squares and dimers. Mandal D; Rajesh R Phys Rev E; 2017 Jul; 96(1-1):012140. PubMed ID: 29347141 [TBL] [Abstract][Full Text] [Related]