These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28324252)

  • 1. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area.
    Elumalai V; Brindha K; Sithole B; Lakshmanan E
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11601-11617. PubMed ID: 28324252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran.
    Mirzaei R; Sakizadeh M
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination.
    Fischer A; Lee MK; Ojeda AS; Rogers SR
    J Environ Manage; 2021 Feb; 280():111683. PubMed ID: 33246756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.
    Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach.
    Liang CP; Chen JS; Chien YC; Chen CF
    Sci Total Environ; 2018 Jun; 627():1048-1057. PubMed ID: 29426124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal interpolation approach for groundwater depth estimation.
    Yasin KH; Gelete TB; Iguala AD; Kebede E
    MethodsX; 2024 Dec; 13():102916. PubMed ID: 39253007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management.
    Yuval Y; Rimon Y; Graber ER; Furman A
    Environ Sci Process Impacts; 2014 Aug; 16(8):2007-17. PubMed ID: 25053141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas.
    Gong G; Mattevada S; O'Bryant SE
    Environ Res; 2014 Apr; 130():59-69. PubMed ID: 24559533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of water table interpolation and groundwater storage volume using fuzzy computations.
    Masoumi Z; Rezaei A; Maleki J
    Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing groundwater quality in Greece based on spatial and temporal analysis.
    Dokou Z; Kourgialas NN; Karatzas GP
    Environ Monit Assess; 2015 Dec; 187(12):774. PubMed ID: 26612565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins.
    Varouchakis EA; Hristopulos DT
    Environ Monit Assess; 2013 Jan; 185(1):1-19. PubMed ID: 22311559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods.
    Arslan H
    Environ Monit Assess; 2014 Aug; 186(8):5123-34. PubMed ID: 24729182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.
    Anders R; Mendez GO; Futa K; Danskin WR
    Ground Water; 2014; 52(5):756-68. PubMed ID: 24032352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.
    Hu K; Huang Y; Li H; Li B; Chen D; White RE
    Environ Int; 2005 Aug; 31(6):896-903. PubMed ID: 16005970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.
    Baram S; Kurtzman D; Ronen Z; Peeters A; Dahan O
    J Environ Manage; 2014 Jan; 132():135-44. PubMed ID: 24295724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management.
    Ducci D; de Melo MTC; Preziosi E; Sellerino M; Parrone D; Ribeiro L
    Sci Total Environ; 2016 Nov; 569-570():569-584. PubMed ID: 27371772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis.
    Lu Q; Luo QS; Li H; Liu YD; Gu JD; Lin KF
    PLoS One; 2015; 10(11):e0142241. PubMed ID: 26565796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.
    Islam MJ; Hakim MA; Hanafi MM; Juraimi AS; Aktar S; Siddiqa A; Rahman AK; Islam MA; Halim MA
    J Environ Biol; 2014 Jul; 35(4):765-79. PubMed ID: 25004765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece).
    Matiatos I
    Sci Total Environ; 2016 Jan; 541():802-814. PubMed ID: 26437351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater quality mapping in urban groundwater using GIS.
    Nas B; Berktay A
    Environ Monit Assess; 2010 Jan; 160(1-4):215-27. PubMed ID: 19096909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.