These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28324314)

  • 1. Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues.
    Bandikari R; Poondla V; Obulam VS
    3 Biotech; 2014 Dec; 4(6):655-664. PubMed ID: 28324314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Production of Xylanase by
    Sunkar B; Kannoju B; Bhukya B
    Front Microbiol; 2020; 11():772. PubMed ID: 32390996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of xylanase by
    Fasiku SA; Bello MA; Odeniyi OA
    Access Microbiol; 2023; 5(6):. PubMed ID: 37424564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes.
    Reddy SS; Krishnan C
    Prep Biochem Biotechnol; 2016; 46(1):49-55. PubMed ID: 25310011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of xylanase from locally isolated fungal strain using agro-industrial residues under solid-state fermentation.
    Abdullah R; Nisar K; Aslam A; Iqtedar M; Naz S
    Nat Prod Res; 2015; 29(11):1006-11. PubMed ID: 25299357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Agro-industrial Wastes for the Simultaneous Production of Amylase and Xylanase by Thermophilic Actinomycetes.
    Singh R; Kapoor V; Kumar V
    Braz J Microbiol; 2012 Oct; 43(4):1545-52. PubMed ID: 24031986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation.
    Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA
    J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy.
    Sanjivkumar M; Silambarasan T; Balagurunathan R; Immanuel G
    Int J Biol Macromol; 2018 Oct; 118(Pt A):195-208. PubMed ID: 29909037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads.
    Bagewadi ZK; Mulla SI; Shouche Y; Ninnekar HZ
    3 Biotech; 2016 Dec; 6(2):164. PubMed ID: 28330236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement.
    Lio J; Wang T
    J Agric Food Chem; 2012 Aug; 60(31):7702-9. PubMed ID: 22799754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state fermentation of oil palm frond petiole for lignin peroxidase and xylanase-rich cocktail production.
    Mohamad Ikubar MR; Abdul Manan M; Md Salleh M; Yahya A
    3 Biotech; 2018 May; 8(5):259. PubMed ID: 29765817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32.
    Ninawe S; Kuhad RC
    J Appl Microbiol; 2005; 99(5):1141-8. PubMed ID: 16238744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation.
    El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA
    BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application.
    Pandya JJ; Gupte A
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):769-79. PubMed ID: 22271252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF.
    Kar S; Sona Gauri S; Das A; Jana A; Maity C; Mandal A; Das Mohapatra PK; Pati BR; Mondal KC
    Bioprocess Biosyst Eng; 2013 Jan; 36(1):57-68. PubMed ID: 22678130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of strategy for simultaneous enhanced production of alkaline xylanase-pectinase enzymes by a bacterial isolate in short submerged fermentation cycle.
    Sharma D; Sharma G; Mahajan R
    Enzyme Microb Technol; 2019 Mar; 122():90-100. PubMed ID: 30638513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy.
    Du C; Li Y; Zong H; Yuan T; Yuan W; Jiang Y
    Bioresour Technol; 2020 Aug; 310():123427. PubMed ID: 32353769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue.
    Liming X; Xueliang S
    Bioresour Technol; 2004 Feb; 91(3):259-62. PubMed ID: 14607485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover.
    Qing Q; Wyman CE
    Biotechnol Biofuels; 2011 Jun; 4(1):18. PubMed ID: 21702938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Banana Peels: A Promising Substrate for the Coproduction of Pectinase and Xylanase from
    Zehra M; Syed MN; Sohail M
    Pol J Microbiol; 2020 Sep; 69(1):19-26. PubMed ID: 32189485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.