These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 28324431)
1. Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. Pathak KV; Keharia H 3 Biotech; 2014 Jun; 4(3):283-295. PubMed ID: 28324431 [TBL] [Abstract][Full Text] [Related]
2. Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS). Pathak KV; Keharia H J Appl Microbiol; 2013 May; 114(5):1300-10. PubMed ID: 23387377 [TBL] [Abstract][Full Text] [Related]
3. Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. Pathak KV; Keharia H; Gupta K; Thakur SS; Balaram P J Am Soc Mass Spectrom; 2012 Oct; 23(10):1716-28. PubMed ID: 22847390 [TBL] [Abstract][Full Text] [Related]
4. Structural characterization and identification of cyclic lipopeptides produced by Bacillus methylotrophicus DCS1 strain. Jemil N; Manresa A; Rabanal F; Ben Ayed H; Hmidet N; Nasri M J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Aug; 1060():374-386. PubMed ID: 28666229 [TBL] [Abstract][Full Text] [Related]
5. Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Pathak KV; Keharia H 3 Biotech; 2014 Feb; 4(1):41-48. PubMed ID: 28324457 [TBL] [Abstract][Full Text] [Related]
6. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Yang H; Li X; Li X; Yu H; Shen Z Anal Bioanal Chem; 2015 Mar; 407(9):2529-42. PubMed ID: 25662934 [TBL] [Abstract][Full Text] [Related]
7. Ion trap mass spectrometry of surfactins produced by Bacillus subtilis SZMC 6179J reveals novel fragmentation features of cyclic lipopeptides. Bóka B; Manczinger L; Kecskeméti A; Chandrasekaran M; Kadaikunnan S; Alharbi NS; Vágvölgyi C; Szekeres A Rapid Commun Mass Spectrom; 2016 Jul; 30(13):1581-90. PubMed ID: 27321846 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of novel surfactins produced by fungal antagonist Bacillus amyloliquefaciens 6B. Pathak KV; Bose A; Keharia H Biotechnol Appl Biochem; 2014; 61(3):349-56. PubMed ID: 24164289 [TBL] [Abstract][Full Text] [Related]
10. Identification of cyclic lipopeptides produced by Bacillus vallismortis R2 and their antifungal activity against Alternaria alternata. Kaur PK; Joshi N; Singh IP; Saini HS J Appl Microbiol; 2017 Jan; 122(1):139-152. PubMed ID: 27665751 [TBL] [Abstract][Full Text] [Related]
11. High-Frequency Occurrence of Surfactin Monomethyl Isoforms in the Ferment Broth of a Kecskeméti A; Bartal A; Bóka B; Kredics L; Manczinger L; Shine K; Alharby NS; Khaled JM; Varga M; Vágvölgyi C; Szekeres A Molecules; 2018 Sep; 23(9):. PubMed ID: 30200458 [TBL] [Abstract][Full Text] [Related]
12. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC-ESI-MS/MS. Ma Y; Kong Q; Qin C; Chen Y; Chen Y; Lv R; Zhou G AMB Express; 2016 Dec; 6(1):79. PubMed ID: 27639854 [TBL] [Abstract][Full Text] [Related]
13. Effect-directed screening of Bacillus lipopeptide extracts via hyphenated high-performance thin-layer chromatography. Jamshidi-Aidji M; Dimkić I; Ristivojević P; Stanković S; Morlock GE J Chromatogr A; 2019 Nov; 1605():460366. PubMed ID: 31378526 [TBL] [Abstract][Full Text] [Related]
14. Lipopeptides from an isolate of Bacillus subtilis complex have inhibitory and antibiofilm effects on Fusarium solani. Santos-Lima D; de Castro Spadari C; de Morais Barroso V; Carvalho JCS; de Almeida LC; Alcalde FSC; Ferreira MJP; Sannomiya M; Ishida K Appl Microbiol Biotechnol; 2023 Oct; 107(19):6103-6120. PubMed ID: 37561179 [TBL] [Abstract][Full Text] [Related]
15. Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Nanjani S; Soni R; Paul D; Keharia H Gene; 2022 Aug; 836():146671. PubMed ID: 35714801 [TBL] [Abstract][Full Text] [Related]
16. High-cell-density culture enhances the antimicrobial and freshness effects of Bacillus subtilis S1702 on table grapes (Vitis vinifera cv. Kyoho). Zhang B; Li Y; Zhang Y; Qiao H; He J; Yuan Q; Chen X; Fan J Food Chem; 2019 Jul; 286():541-549. PubMed ID: 30827645 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial activity against enterovirulent Escherichia coli strains from Bacillus amyloliquefaciens B31 and Bacillus subtilis subsp. subtilis C4: MALDI-TOF MS profiling and MALDI TOF/TOF MS structural analysis on lipopeptides mixtures. Huarachi SF; Petroselli G; Erra-Balsells R; Audisio MC J Mass Spectrom; 2022 Dec; 57(12):e4896. PubMed ID: 36426779 [TBL] [Abstract][Full Text] [Related]
18. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Bonmatin JM; Laprévote O; Peypoux F Comb Chem High Throughput Screen; 2003 Sep; 6(6):541-56. PubMed ID: 14529379 [TBL] [Abstract][Full Text] [Related]
19. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Kim PI; Ryu J; Kim YH; Chi YT J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245 [TBL] [Abstract][Full Text] [Related]
20. Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR. Sajitha KL; Dev SA; Maria Florence EJ Curr Microbiol; 2016 Jul; 73(1):46-53. PubMed ID: 27004481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]