These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 28324547)

  • 21. Bioethanol from lignocellulosics: Status and perspectives in Canada.
    Mabee WE; Saddler JN
    Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes.
    Abo BO; Gao M; Wang Y; Wu C; Ma H; Wang Q
    Rev Environ Health; 2019 Mar; 34(1):57-68. PubMed ID: 30685745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioethanol from lignocellulosic biomass: current findings determine research priorities.
    Kang Q; Appels L; Tan T; Dewil R
    ScientificWorldJournal; 2014; 2014():298153. PubMed ID: 25614881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioethanol production from agricultural residues as lignocellulosic biomass feedstock's waste valorization approach: A comprehensive review.
    Jayakumar M; Gindaba GT; Gebeyehu KB; Periyasamy S; Jabesa A; Baskar G; John BI; Pugazhendhi A
    Sci Total Environ; 2023 Jun; 879():163158. PubMed ID: 37001650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fermentation of Biomass and Residues from Brazilian Agriculture for 2G Bioethanol Production.
    Faria DJ; Carvalho APA; Conte-Junior CA
    ACS Omega; 2024 Oct; 9(39):40298-40314. PubMed ID: 39372026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.
    Chandel AK; Gonçalves BC; Strap JL; da Silva SS
    Crit Rev Biotechnol; 2015; 35(3):281-93. PubMed ID: 24156399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The bioethanol industry in sub-Saharan Africa: history, challenges, and prospects.
    Deenanath ED; Iyuke S; Rumbold K
    J Biomed Biotechnol; 2012; 2012():416491. PubMed ID: 22536020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol.
    Ndubuisi IA; Amadi CO; Nwagu TN; Murata Y; Ogbonna JC
    Biotechnol Adv; 2023; 63():108100. PubMed ID: 36669745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subcritical and supercritical technology for the production of second generation bioethanol.
    Rostagno MA; Prado JM; Mudhoo A; Santos DT; Forster-Carneiro T; Meireles MA
    Crit Rev Biotechnol; 2015; 35(3):302-12. PubMed ID: 24494703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential.
    Kirupa Sankar M; Ravikumar R; Naresh Kumar M; Sivakumar U
    Bioresour Technol; 2018 Dec; 269():227-236. PubMed ID: 30179756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw.
    Madadi M; Zhao K; Wang Y; Wang Y; Tang SW; Xia T; Jin N; Xu Z; Li G; Qi Z; Peng L; Xiong Z
    Carbohydr Polym; 2021 Aug; 265():118070. PubMed ID: 33966834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the Sequential Combination of Bioethanol and Biogas Production from Corn Straw.
    Kotarska K; Dziemianowicz W; Świerczyńska A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31842493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach.
    Devi A; Bajar S; Kour H; Kothari R; Pant D; Singh A
    Bioenergy Res; 2022; 15(4):1820-1841. PubMed ID: 35154558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Combined Na
    Elyamny S; Hamdy A; Ali R; Hamad H
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodiesel from lignocellulosic biomass--prospects and challenges.
    Yousuf A
    Waste Manag; 2012 Nov; 32(11):2061-7. PubMed ID: 22475852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol and biogas.
    Yuan HW; Tan L; Kida K; Morimura S; Sun ZY; Tang YQ
    J Biosci Bioeng; 2021 May; 131(5):461-468. PubMed ID: 33526306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioethanol production from rice husk using different pretreatments and fermentation conditions.
    Madu JO; Agboola BO
    3 Biotech; 2018 Jan; 8(1):15. PubMed ID: 29259890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.