BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28324565)

  • 1. Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks.
    Adzitey F; Huda N; Ali GR
    3 Biotech; 2013 Apr; 3(2):97-107. PubMed ID: 28324565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens.
    Foley SL; Lynne AM; Nayak R
    Infect Genet Evol; 2009 Jul; 9(4):430-40. PubMed ID: 19460308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surveillance for foodborne disease outbreaks - United States, 1998-2008.
    Gould LH; Walsh KA; Vieira AR; Herman K; Williams IT; Hall AJ; Cole D;
    MMWR Surveill Summ; 2013 Jun; 62(2):1-34. PubMed ID: 23804024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments and future prospects in subtyping of foodborne bacterial pathogens.
    Hyytiä-Trees EK; Cooper K; Ribot EM; Gerner-Smidt P
    Future Microbiol; 2007 Apr; 2(2):175-85. PubMed ID: 17661654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications.
    Oliver SP; Jayarao BM; Almeida RA
    Foodborne Pathog Dis; 2005; 2(2):115-29. PubMed ID: 15992306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of WGS-subtyping methods for epidemiological surveillance of foodborne salmonellosis.
    Mohammed M; Thapa S
    One Health Outlook; 2020; 2():13. PubMed ID: 33829134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enrichment, Amplification, and Sequence-Based Typing of Salmonella enterica and Other Foodborne Pathogens.
    Edlind T; Brewster JD; Paoli GC
    J Food Prot; 2017 Jan; 80(1):15-24. PubMed ID: 28221883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria monocytogenes Infections - United States, 2016.
    Marshall KE; Nguyen TA; Ablan M; Nichols MC; Robyn MP; Sundararaman P; Whitlock L; Wise ME; Jhung MA
    MMWR Surveill Summ; 2020 Nov; 69(6):1-14. PubMed ID: 33180756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature.
    Tamburro M; Ripabelli G
    Ann Ig; 2017; 29(4):293-316. PubMed ID: 28569339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the pan genome of Campylobacter jejuni isolates recovered from poultry by pulsed-field gel electrophoresis, multilocus sequence typing (MLST), and repetitive sequence polymerase chain reaction (rep-PCR) reveals different discriminatory capabilities.
    Wilson MK; Lane AB; Law BF; Miller WG; Joens LA; Konkel ME; White BA
    Microb Ecol; 2009 Nov; 58(4):843-55. PubMed ID: 19697077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Whole-Genome Sequencing in the National Molecular Tracing Network for Foodborne Disease Surveillance in China.
    Li W; Cui Q; Bai L; Fu P; Han H; Liu J; Guo Y
    Foodborne Pathog Dis; 2021 Aug; 18(8):538-546. PubMed ID: 34339263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity among Campylobacter jejuni isolates from healthy livestock and their links to human isolates in Spain.
    Oporto B; Juste RA; López-Portolés JA; Hurtado A
    Zoonoses Public Health; 2011 Aug; 58(5):365-75. PubMed ID: 21040505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Typing of
    Noormohamed A; Fakhr MK
    Foods; 2014 Jan; 3(1):82-93. PubMed ID: 28234305
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.
    Sahin O; Fitzgerald C; Stroika S; Zhao S; Sippy RJ; Kwan P; Plummer PJ; Han J; Yaeger MJ; Zhang Q
    J Clin Microbiol; 2012 Mar; 50(3):680-7. PubMed ID: 22189122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Molecular Typing Results in Source Attribution Models: The Case of Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) of Salmonella Isolates Obtained from Integrated Surveillance in Denmark.
    de Knegt LV; Pires SM; Löfström C; Sørensen G; Pedersen K; Torpdahl M; Nielsen EM; Hald T
    Risk Anal; 2016 Mar; 36(3):571-88. PubMed ID: 27002674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of molecular typing methods for the differentiation of Salmonella foodborne pathogens.
    Foley SL; Zhao S; Walker RD
    Foodborne Pathog Dis; 2007; 4(3):253-76. PubMed ID: 17883310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Prevalence of Foodborne Pathogens in Livestock Using Metagenomics Approach.
    Kim H; Cho JH; Song M; Cho JH; Kim S; Kim ES; Keum GB; Kim HB; Lee JH
    J Microbiol Biotechnol; 2021 Dec; 31(12):1701-1708. PubMed ID: 34675137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence and evolution of H10 subtype influenza viruses in poultry in China.
    Ma C; Lam TT; Chai Y; Wang J; Fan X; Hong W; Zhang Y; Li L; Liu Y; Smith DK; Webby RJ; Peiris JS; Zhu H; Guan Y
    J Virol; 2015 Apr; 89(7):3534-41. PubMed ID: 25589662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of whole-genome sequencing as a genotyping tool for Campylobacter jejuni in comparison with pulsed-field gel electrophoresis and flaA typing.
    Pendleton S; Hanning I; Biswas D; Ricke SC
    Poult Sci; 2013 Feb; 92(2):573-80. PubMed ID: 23300325
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.