These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28324651)

  • 21. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure.
    Sasahara K; Morigaki K; Shinya K
    Phys Chem Chem Phys; 2013 Jun; 15(23):8929-39. PubMed ID: 23515399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes.
    Ryu YS; Wittenberg NJ; Suh JH; Lee SW; Sohn Y; Oh SH; Parikh AN; Lee SD
    Sci Rep; 2016 May; 6():26823. PubMed ID: 27230411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the binding kinetics and behaviors of self-aggregated beta-amyloid oligomers to phase-separated lipid rafts with or without ganglioside-clusters.
    Pham T; Cheng KH
    Biophys Chem; 2022 Nov; 290():106874. PubMed ID: 36067650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes.
    Radhakrishnan A; Anderson TG; McConnell HM
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12422-7. PubMed ID: 11050164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A closer look at the canonical 'Raft Mixture' in model membrane studies.
    Veatch SL; Keller SL
    Biophys J; 2003 Jan; 84(1):725-6. PubMed ID: 12524324
    [No Abstract]   [Full Text] [Related]  

  • 27. Phase diagrams of lipid mixtures relevant to the study of membrane rafts.
    Goñi FM; Alonso A; Bagatolli LA; Brown RE; Marsh D; Prieto M; Thewalt JL
    Biochim Biophys Acta; 2008; 1781(11-12):665-84. PubMed ID: 18952002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.
    Suzuki KGN; Ando H; Komura N; Konishi M; Imamura A; Ishida H; Kiso M; Fujiwara TK; Kusumi A
    Methods Enzymol; 2018; 598():267-282. PubMed ID: 29306438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lo/Ld phase coexistence modulation induced by GM1.
    Puff N; Watanabe C; Seigneuret M; Angelova MI; Staneva G
    Biochim Biophys Acta; 2014 Aug; 1838(8):2105-14. PubMed ID: 24835016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.
    Chiantia S; Ries J; Kahya N; Schwille P
    Chemphyschem; 2006 Nov; 7(11):2409-18. PubMed ID: 17051578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
    Wang TY; Silvius JR
    Biophys J; 2003 Jan; 84(1):367-78. PubMed ID: 12524290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.
    Sakamoto S; Uto T; Shoyama Y
    Biochim Biophys Acta; 2015 Feb; 1848(2):434-43. PubMed ID: 25445675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
    Khadka NK; Ho CS; Pan J
    Langmuir; 2015 Nov; 31(45):12417-25. PubMed ID: 26506226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of a photoactivable GM1 ganglioside analogue to assess lipid distribution in caveolae bilayer.
    Pitto M; Brunner J; Ferraretto A; Ravasi D; Palestini P; Masserini M
    Glycoconj J; 2000; 17(3 -4):215-22. PubMed ID: 11201793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study.
    Chiantia S; Kahya N; Schwille P
    Langmuir; 2007 Jul; 23(14):7659-65. PubMed ID: 17564472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies.
    Zaborowska M; Dziubak D; Matyszewska D; Sek S; Bilewicz R
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion.
    Yang ST; Kiessling V; Tamm LK
    Nat Commun; 2016 Apr; 7():11401. PubMed ID: 27113279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins.
    Kinoshita M; Suzuki KGN; Murata M; Matsumori N
    Chem Phys Lipids; 2018 Sep; 215():84-95. PubMed ID: 30005889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular level investigation of organization in ternary lipid bilayer: a computational approach.
    Mondal S; Mukhopadhyay C
    Langmuir; 2008 Sep; 24(18):10298-305. PubMed ID: 18712895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study.
    de Almeida RF; Loura LM; Fedorov A; Prieto M
    J Mol Biol; 2005 Mar; 346(4):1109-20. PubMed ID: 15701521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.