These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28324708)

  • 21. Removal of small trihalomethane precursors from aqueous solution by nanofiltration.
    Lin YL; Chiang PC; Chang EE
    J Hazard Mater; 2007 Jul; 146(1-2):20-9. PubMed ID: 17212977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates.
    Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.
    Shen J; Schäfer AI
    Sci Total Environ; 2015 Sep; 527-528():520-9. PubMed ID: 26005995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.
    Liu YL; Wang XM; Yang HW; Xie YF
    Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms.
    Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K
    J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2009 May; 43(9):2349-62. PubMed ID: 19303127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium.
    Ding S; Yang Y; Huang H; Liu H; Hou LA
    J Hazard Mater; 2015 Aug; 294():27-34. PubMed ID: 25841084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review.
    Shen J; Schäfer A
    Chemosphere; 2014 Dec; 117():679-91. PubMed ID: 25461935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rejection of micropollutants by clean and fouled forward osmosis membrane.
    Valladares Linares R; Yangali-Quintanilla V; Li Z; Amy G
    Water Res; 2011 Dec; 45(20):6737-44. PubMed ID: 22055122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus for aquaculture.
    Leo CP; Yahya MZ; Kamal SN; Ahmad AL; Mohammad AW
    Water Sci Technol; 2013; 67(4):831-7. PubMed ID: 23306262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boron Can Be Used to Predict Trace Organic Rejection through Reverse Osmosis Membranes for Potable Reuse.
    Breitner LN; Howe KJ; Minakata D
    Environ Sci Technol; 2018 Dec; 52(23):13871-13878. PubMed ID: 30444356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of natural hormone estrone from secondary effluents using nanofiltration and reverse osmosis.
    Jin X; Hu J; Ong SL
    Water Res; 2010 Jan; 44(2):638-48. PubMed ID: 19879623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
    Dražević E; Košutić K; Freger V
    Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment.
    Radjenović J; Petrović M; Ventura F; Barceló D
    Water Res; 2008 Aug; 42(14):3601-10. PubMed ID: 18656225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Researches on factors affecting the removal of carbamazepine by nanofiltration membranes].
    Huang Y; Zhang H; Dong BZ
    Huan Jing Ke Xue; 2011 Mar; 32(3):705-10. PubMed ID: 21634167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis.
    Schäfer AI; Nghiem LD; Waite TD
    Environ Sci Technol; 2003 Jan; 37(1):182-8. PubMed ID: 12542309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.