These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28324753)

  • 1. Error augmentation feedback for lateral weight shifting.
    O'Brien K; Crowell CR; Schmiedeler J
    Gait Posture; 2017 May; 54():178-182. PubMed ID: 28324753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.
    Kennedy MW; Bretl T; Schmiedeler JP
    Gait Posture; 2014; 40(1):134-9. PubMed ID: 24708905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative efficacy of various strategies for visual feedback in standing balance activities.
    Kennedy MW; Crowell CR; Striegel AD; Villano M; Schmiedeler JP
    Exp Brain Res; 2013 Sep; 230(1):117-25. PubMed ID: 23836111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centre of pressure or centre of mass feedback in mediolateral balance assessment.
    Cofré Lizama LE; Pijnappels M; Reeves NP; Verschueren SM; van Dieën JH
    J Biomech; 2015 Feb; 48(3):539-43. PubMed ID: 25547025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual feedback of the centre of gravity to optimize standing balance.
    Lakhani B; Mansfield A
    Gait Posture; 2015 Feb; 41(2):499-503. PubMed ID: 25542399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Filtering the Center of Pressure Feedback Provided in Visually Guided Mediolateral Weight Shifting.
    Kennedy MW; Crowell CR; Villano M; Schmiedeler JP
    PLoS One; 2016; 11(3):e0151393. PubMed ID: 26991996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study.
    Lee BC; Thrasher TA; Fisher SP; Layne CS
    J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle synergies involved in shifting the center of pressure while making a first step.
    Wang Y; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2005 Nov; 167(2):196-210. PubMed ID: 16034579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of task constraints in relating laboratory and clinical measures of balance.
    Kuznetsov NA; Riley MA
    Gait Posture; 2015 Sep; 42(3):275-9. PubMed ID: 26112778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the type of visual feedback information change the control of standing balance?
    Dos Anjos F; Lemos T; Imbiriba LA
    Eur J Appl Physiol; 2016 Sep; 116(9):1771-9. PubMed ID: 27431210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensorimotor adaptation of whole-body postural control.
    Shiller DM; Veilleux LN; Marois M; Ballaz L; Lemay M
    Neuroscience; 2017 Jul; 356():217-228. PubMed ID: 28549560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of visual feedback during a rhythmic weight-shifting task in patients with Parkinson's disease.
    van den Heuvel MRC; Daffertshofer A; Beek PJ; Kwakkel G; van Wegen EEH
    Gait Posture; 2016 Jul; 48():140-145. PubMed ID: 27258811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-cost evaluation and real-time feedback of static and dynamic weight bearing asymmetry in patients undergoing in-patient physiotherapy rehabilitation for neurological conditions.
    Foo J; Paterson K; Williams G; Clark R
    J Neuroeng Rehabil; 2013 Jul; 10():74. PubMed ID: 23849318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensori-motor integration during stance: time adaptation of control mechanisms on adding or removing vision.
    Sozzi S; Monti A; De Nunzio AM; Do MC; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):172-89. PubMed ID: 20727610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: complexity and performance.
    Barbado Murillo D; Sabido Solana R; Vera-Garcia FJ; Gusi Fuertes N; Moreno FJ
    Hum Mov Sci; 2012 Oct; 31(5):1224-37. PubMed ID: 22658508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error Augmentation Improves Visuomotor Adaptation during a Full-Body Balance Task.
    Fasola J; Kannape OA; Bouri M; Bleuler H; Blanke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1529-1533. PubMed ID: 31946185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.
    Pellegrino L; Giannoni P; Marinelli L; Casadio M
    J Neuroeng Rehabil; 2017 Oct; 14(1):107. PubMed ID: 29037206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor integration during stance: processing time of active or passive addition or withdrawal of visual or haptic information.
    Sozzi S; Do MC; Monti A; Schieppati M
    Neuroscience; 2012 Jun; 212():59-76. PubMed ID: 22516013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.