These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28324934)

  • 21. Design of a thumb module for the FINGER rehabilitation robot.
    Wolbrecht ET; Morse KJ; Perry JC; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():582-585. PubMed ID: 28268397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical design and feasibility of a finger exoskeleton to support finger extension of severely affected stroke patients.
    Haarman CJW; Hekman EEG; Rietman JS; Van Der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of thumb and finger extension and its relation to grasp performance after stroke.
    Lang CE; DeJong SL; Beebe JA
    J Neurophysiol; 2009 Jul; 102(1):451-9. PubMed ID: 19458140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thumb and finger movement is reduced after stroke: An observational study.
    Eschmann H; Héroux ME; Cheetham JH; Potts S; Diong J
    PLoS One; 2019; 14(6):e0217969. PubMed ID: 31188859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulated distal interphalangeal joint fusion of the index and middle fingers in 0° and 20° of flexion: a comparison of grip strength and dexterity.
    Melamed E; Polatsch DB; Beldner S; Melone CP
    J Hand Surg Am; 2014 Oct; 39(10):1986-91. PubMed ID: 25066294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-finger coordination in healthy subjects and stroke patients: a mathematical modelling approach.
    Carpinella I; Jonsdottir J; Ferrarin M
    J Neuroeng Rehabil; 2011 Apr; 8():19. PubMed ID: 21507238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corticomuscular coherence analysis on hand movement distinction for active rehabilitation.
    Lou X; Xiao S; Qi Y; Hu X; Wang Y; Zheng X
    Comput Math Methods Med; 2013; 2013():908591. PubMed ID: 23690885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reorganization of finger coordination patterns through motor exploration in individuals after stroke.
    Ranganathan R
    J Neuroeng Rehabil; 2017 Sep; 14(1):90. PubMed ID: 28893292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of grip location, arm support, and muscle stretch on sustained finger flexor activity following stroke.
    Seo NJ; Kamper DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4170-3. PubMed ID: 19163631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spring operated wearable enhancer for arm rehabilitation (SpringWear) after stroke.
    Ji Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4893-4896. PubMed ID: 28269367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Home-Based Therapy After Stroke Using the Hand Spring Operated Movement Enhancer (HandSOME II).
    Casas R; Sandison M; Nichols D; Martin K; Phan K; Chen T; Lum PS
    Front Neurorobot; 2021; 15():773477. PubMed ID: 34975447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of an exoskeleton for index finger rehabilitation.
    Wang J; Li J; Zhang Y; Wang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5957-60. PubMed ID: 19965067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selectivity and resolution of surface electrical stimulation for grasp and release.
    Westerveld AJ; Schouten AC; Veltink PH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):94-101. PubMed ID: 22180518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hand Kinematics Characterization While Performing Activities of Daily Living Through Kinematics Reduction.
    Jarque-Bou NJ; Vergara M; Sancho-Bru JL; Gracia-Ibanez V; Roda-Sales A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1556-1565. PubMed ID: 32634094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An intention driven hand functions task training robotic system.
    Tong KY; Ho SK; Pang PK; Hu XL; Tam WK; Fung KL; Wei XJ; Chen PN; Chen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3406-9. PubMed ID: 21097247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.
    Meeker C; Park S; Bishop L; Stein J; Ciocarlie M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.