These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28324938)

  • 1. Application of semi-supervised deep learning to lung sound analysis.
    Chamberlain D; Kodgule R; Ganelin D; Miglani V; Fletcher RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():804-807. PubMed ID: 28324938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of lung sounds using scalogram representation of sound segments and convolutional neural network.
    Pham Thi Viet H; Nguyen Thi Ngoc H; Tran Anh V; Hoang Quang H
    J Med Eng Technol; 2022 May; 46(4):270-279. PubMed ID: 35212591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination.
    Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R
    Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wheeze recognition algorithm for practical implementation in children.
    Habukawa C; Ohgami N; Matsumoto N; Hashino K; Asai K; Sato T; Murakami K
    PLoS One; 2020; 15(10):e0240048. PubMed ID: 33031408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crackle Detection In Lung Sounds Using Transfer Learning And Multi-Input Convolutional Neural Networks.
    Nguyen T; Pernkopf F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():80-83. PubMed ID: 34891244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural classification of lung sounds using wavelet coefficients.
    Kandaswamy A; Kumar CS; Ramanathan RP; Jayaraman S; Malmurugan N
    Comput Biol Med; 2004 Sep; 34(6):523-37. PubMed ID: 15265722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining neural network and genetic algorithm for prediction of lung sounds.
    Güler I; Polat H; Ergün U
    J Med Syst; 2005 Jun; 29(3):217-31. PubMed ID: 16050077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crackle and wheeze detection in lung sound signals using convolutional neural networks.
    Faustino P; Oliveira J; Coimbra M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():345-348. PubMed ID: 34891306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable system for auscultation and lung sound analysis.
    Nabiev R; Glazova A; Olyinik V; Makarenkova A; Makarenkov A; Rakhimov A; Felländer-Tsai L
    Stud Health Technol Inform; 2014; 196():290-3. PubMed ID: 24732524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Respiratory Crackle Sounds via an Android Smartphone-based System.
    Olvera-Montes N; Reyes B; Charleston-Villalobos S; Gonzalez-Camarena R; MejiaAvila M; Dorantes-Mendez G; Reulecke S; Aljama-Corrales TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1620-1623. PubMed ID: 30440703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of vesicular sounds from pulmonary crackle waveforms.
    Yeginer M; Kahya YP
    Comput Methods Programs Biomed; 2008 Jan; 89(1):1-13. PubMed ID: 18023914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
    Becker KW; Scheffer C; Blanckenberg MM; Diacon AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4334-7. PubMed ID: 24110692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNN-MoE Based Framework for Classification of Respiratory Anomalies and Lung Disease Detection.
    Pham L; Phan H; Palaniappan R; Mertins A; McLoughlin I
    IEEE J Biomed Health Inform; 2021 Aug; 25(8):2938-2947. PubMed ID: 33684048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unwrapping the phase portrait features of adventitious crackle for auscultation and classification: a machine learning approach.
    Sreejyothi S; Renjini A; Raj V; Swapna MNS; Sankararaman SI
    J Biol Phys; 2021 Jun; 47(2):103-115. PubMed ID: 33905049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital Pulmonology Practice with Phonopulmography Leveraging Artificial Intelligence: Future Perspectives Using Dual Microwave Acoustic Sensing and Imaging.
    Sethi AK; Muddaloor P; Anvekar P; Agarwal J; Mohan A; Singh M; Gopalakrishnan K; Yadav A; Adhikari A; Damani D; Kulkarni K; Aakre CA; Ryu AJ; Iyer VN; Arunachalam SP
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic adventitious respiratory sound analysis: A systematic review.
    Pramono RXA; Bowyer S; Rodriguez-Villegas E
    PLoS One; 2017; 12(5):e0177926. PubMed ID: 28552969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automated computerized auscultation and diagnostic system for pulmonary diseases.
    Abbas A; Fahim A
    J Med Syst; 2010 Dec; 34(6):1149-55. PubMed ID: 20703592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].
    Yan WY; Li L; Yang YG; Lin XL; Wu JZ
    Zhonghua Er Ke Za Zhi; 2016 Aug; 54(8):605-9. PubMed ID: 27510874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.