These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 28324945)
1. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control. Isaksen J; Mohebbi A; Puthusserypady S Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1512-1515. PubMed ID: 28324945 [TBL] [Abstract][Full Text] [Related]
2. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated Visual Evoked Potential. Mohebbi A; Engelsholm SK; Puthusserypady S; Kjaer TW; Thomsen CE; Sorensen HB Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():602-5. PubMed ID: 26736334 [TBL] [Abstract][Full Text] [Related]
3. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications. Isaksen JL; Mohebbi A; Puthusserypady S PLoS One; 2017; 12(9):e0184785. PubMed ID: 28902895 [TBL] [Abstract][Full Text] [Related]
4. A calibration-free c-VEP based BCI employing narrow-band random sequences. Zheng L; Dong Y; Tian S; Pei W; Gao X; Wang Y J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38513290 [No Abstract] [Full Text] [Related]
5. A 120-target brain-computer interface based on code-modulated visual evoked potentials. Sun Q; Zheng L; Pei W; Gao X; Wang Y J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686 [TBL] [Abstract][Full Text] [Related]
6. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance. Wei Q; Huang Y; Li M; Lu Z Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316 [TBL] [Abstract][Full Text] [Related]
7. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes. Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842 [TBL] [Abstract][Full Text] [Related]
8. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience. Cabrera Castillos K; Ladouce S; Darmet L; Dehais F Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256 [TBL] [Abstract][Full Text] [Related]
9. A BCI using VEP for continuous control of a mobile robot. Kapeller C; Hintermuller C; Abu-Alqumsan M; Pruckl R; Peer A; Guger C Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5254-7. PubMed ID: 24110921 [TBL] [Abstract][Full Text] [Related]
10. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials. Wei Q; Feng S; Lu Z PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454 [TBL] [Abstract][Full Text] [Related]
11. A high-speed BCI based on code modulation VEP. Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527 [TBL] [Abstract][Full Text] [Related]
12. A Fast Brain Switch Based on Multi-Class Code-Modulated VEPs Zheng L; Wang Y; Pei W; Chen H Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3058-3061. PubMed ID: 31946533 [TBL] [Abstract][Full Text] [Related]
13. A multi-target brain-computer interface based on code modulated visual evoked potentials. Liu Y; Wei Q; Lu Z PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504 [TBL] [Abstract][Full Text] [Related]
14. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface. Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514 [TBL] [Abstract][Full Text] [Related]
15. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning. Spüler M; Rosenstiel W; Bogdan M PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433 [TBL] [Abstract][Full Text] [Related]
16. Hybrid SSVEP-motion visual stimulus based BCI system for intelligent wheelchair. Punsawad Y; Wongsawat Y Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7416-9. PubMed ID: 24111459 [TBL] [Abstract][Full Text] [Related]
17. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces. Sato JI; Washizawa Y Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607 [TBL] [Abstract][Full Text] [Related]
18. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study. Kapeller C; Kamada K; Ogawa H; Prueckl R; Scharinger J; Guger C Front Syst Neurosci; 2014; 8():139. PubMed ID: 25147509 [TBL] [Abstract][Full Text] [Related]
19. A high-performance brain switch based on code-modulated visual evoked potentials. Zheng L; Pei W; Gao X; Zhang L; Wang Y J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051 [No Abstract] [Full Text] [Related]
20. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]