These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28324960)

  • 21. Effect of movement speed on lower and upper body biomechanics during sit-to-stand-to-sit transfers: Self-selected speed vs. fast imposed speed.
    Wang J; Severin AC; Siddicky SF; Barnes CL; Mannen EM
    Hum Mov Sci; 2021 Jun; 77():102797. PubMed ID: 33848920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sit-to-stand biomechanics of individuals with multiple sclerosis.
    Bowser B; O'Rourke S; Brown CN; White L; Simpson KJ
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):788-94. PubMed ID: 26144661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of motor imagery training on symmetrical use of knee extensors during sit-to-stand and stand-to-sit tasks in post-stroke hemiparesis.
    Oh DW; Kim JS; Kim SY; Yoo EY; Jeon HS
    NeuroRehabilitation; 2010; 26(4):307-15. PubMed ID: 20555153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Dynamics analysis of knee joint during sit-stand movement].
    Su P; Wang S; Zhang L; Liu T; Yue C; Zhang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Oct; 39(5):982-990. PubMed ID: 36310487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knee Exoskeleton Reduces Muscle Effort and Improves Balance During Sit-to-Stand Transitions After Stroke: A Case Study.
    Sarkisian SV; Gunnell AJ; Bo Foreman K; Lenzi T
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling, design, and optimization of Mindwalker series elastic joint.
    Wang S; Meijneke C; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of Methods for Estimation of Knee Joint Mechanical Impedance During Locomotion Using a Torque-Controllable Knee Exoskeleton.
    Nazon YF; Doshi RM; Rouse EJ
    J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34286824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soft, Wearable, and Pleated Pneumatic Interference Actuator Provides Knee Extension Torque for Sit-to-Stand.
    Veale AJ; Staman K; van der Kooij H
    Soft Robot; 2021 Feb; 8(1):28-43. PubMed ID: 32364831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population.
    Gasser BW; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3877-80. PubMed ID: 26737140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reliability of concentric and eccentric torque during isokinetic knee extension in post-stroke hemiparesis.
    Clark DJ; Condliffe EG; Patten C
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):395-404. PubMed ID: 16403594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and control of a lower extremity assistive device (LEAD) for gait rehabilitation.
    Shen B; Li J; Bai F; Chew CM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650367. PubMed ID: 24187186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design Principles for Compact, Backdrivable Actuation in Partial-Assist Powered Knee Orthoses.
    Zhu H; Nesler C; Divekar N; Peddinti V; Gregg RD
    IEEE ASME Trans Mechatron; 2021 Dec; 26(6):3104-3115. PubMed ID: 34916771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knee-extension-assist for knee-ankle-foot orthoses.
    Spring A; Kofman J; Lemaire E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8259-62. PubMed ID: 22256260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.