These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28325033)

  • 1. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis.
    Woodward RB; Spanias JA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
    Young AJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.
    Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Across-user adaptation for a powered lower limb prosthesis.
    Spanias JA; Simon AM; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1580-1583. PubMed ID: 28814045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Adaptation of an Artificial Neural Network for Transfemoral Amputees Using a Powered Prosthesis.
    Woodward R; Simon A; Seyforth E; Hargrove L
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1202-1211. PubMed ID: 34652995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis.
    Spanias JA; Simon AM; Perreault EJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5083-5086. PubMed ID: 28269411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intent recognition in a powered lower limb prosthesis using time history information.
    Young AJ; Simon AM; Fey NP; Hargrove LJ
    Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-Independent Intent Recognition for Lower Limb Prostheses Using Depth Sensing.
    Massalin Y; Abdrakhmanova M; Varol HA
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1759-1770. PubMed ID: 29989950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Heuristic Terrain Prediction in Powered Lower-Limb Prostheses Using Onboard Sensors.
    Stolyarov R; Carney M; Herr H
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):384-392. PubMed ID: 32406822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility Analysis of AmpuTees (MAAT 4): classification tree analysis for probability of lower limb prosthesis user functional potential.
    Wurdeman SR; Stevens PM; Campbell JH
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):211-218. PubMed ID: 30741573
    [No Abstract]   [Full Text] [Related]  

  • 18. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
    Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis.
    Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Predicting Transitions to Compliant Surfaces in Human Gait via Neural and Kinematic Signals.
    Angelidou C; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2214-2223. PubMed ID: 37130247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.