These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28325033)

  • 21. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees.
    Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.
    Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses.
    Xu D; Feng Y; Mai J; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.
    Russell Esposito E; Wilken JM
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1186-92. PubMed ID: 25440576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delaying ambulation mode transitions in a powered knee-ankle prosthesis.
    Simon AM; Spanias JA; Ingraham KA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5079-5082. PubMed ID: 28269410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Online adaptive neural control of a robotic lower limb prosthesis.
    Spanias JA; Simon AM; Finucane SB; Perreault EJ; Hargrove LJ
    J Neural Eng; 2018 Feb; 15(1):016015. PubMed ID: 29019467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intention detection of gait initiation using EMG and kinematic data.
    Wentink EC; Beijen SI; Hermens HJ; Rietman JS; Veltink PH
    Gait Posture; 2013 Feb; 37(2):223-8. PubMed ID: 22917647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Turn Intent Detection For Control of a Lower Limb Prosthesis.
    Pew C; Klute GK
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):789-796. PubMed ID: 28678699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy.
    Ledoux ED
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions Between Transfemoral Amputees and a Powered Knee Prosthesis During Load Carriage.
    Brandt A; Wen Y; Liu M; Stallings J; Huang HH
    Sci Rep; 2017 Nov; 7(1):14480. PubMed ID: 29101394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation.
    Liu J; Sheng X; Zhang D; He J; Zhu X
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):166-76. PubMed ID: 25532196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
    Zhang F; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Stair Ascent and Descent Controller for a Powered Ankle Prosthesis.
    Culver S; Bartlett H; Shultz A; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):993-1002. PubMed ID: 29752234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a neural network based control algorithm for powered ankle prosthesis.
    Keleş AD; Yucesoy CA
    J Biomech; 2020 Dec; 113():110087. PubMed ID: 33157417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking.
    Zhang K; Xiong C; Zhang W; Liu H; Lai D; Rong Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):465-476. PubMed ID: 30703033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement.
    Segal AD; Klute GK
    J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.