These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 28325102)
1. Building up and breaking down: mechanisms controlling recombination during replication. Branzei D; Szakal B Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):381-394. PubMed ID: 28325102 [TBL] [Abstract][Full Text] [Related]
2. DNA damage tolerance by recombination: Molecular pathways and DNA structures. Branzei D; Szakal B DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213 [TBL] [Abstract][Full Text] [Related]
3. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173 [TBL] [Abstract][Full Text] [Related]
4. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. Arnaudeau C; Lundin C; Helleday T J Mol Biol; 2001 Apr; 307(5):1235-45. PubMed ID: 11292338 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Saleh-Gohari N; Bryant HE; Schultz N; Parker KM; Cassel TN; Helleday T Mol Cell Biol; 2005 Aug; 25(16):7158-69. PubMed ID: 16055725 [TBL] [Abstract][Full Text] [Related]
6. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Kim TM; Son MY; Dodds S; Hu L; Hasty P Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274 [TBL] [Abstract][Full Text] [Related]
7. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Kim TM; Son MY; Dodds S; Hu L; Hasty P Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776 [TBL] [Abstract][Full Text] [Related]
8. Replication fork instability and the consequences of fork collisions from rereplication. Alexander JL; Orr-Weaver TL Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391 [TBL] [Abstract][Full Text] [Related]
9. Deletion of ULS1 confers damage tolerance in sgs1 mutants through a Top3-dependent D-loop mediated fork restart pathway. Glineburg MR; Johns E; Johnson FB DNA Repair (Amst); 2019 Jun; 78():102-113. PubMed ID: 31005681 [TBL] [Abstract][Full Text] [Related]
10. Preserving replication fork integrity and competence via the homologous recombination pathway. Ait Saada A; Lambert SAE; Carr AM DNA Repair (Amst); 2018 Nov; 71():135-147. PubMed ID: 30220600 [TBL] [Abstract][Full Text] [Related]
11. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. Piwko W; Mlejnkova LJ; Mutreja K; Ranjha L; Stafa D; Smirnov A; Brodersen MM; Zellweger R; Sturzenegger A; Janscak P; Lopes M; Peter M; Cejka P EMBO J; 2016 Dec; 35(23):2584-2601. PubMed ID: 27797818 [TBL] [Abstract][Full Text] [Related]
12. Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Hung SH; Wong RP; Ulrich HD; Kao CF Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2205-E2214. PubMed ID: 28246327 [TBL] [Abstract][Full Text] [Related]
13. Rad51-mediated replication of damaged templates relies on monoSUMOylated DDK kinase. Joseph CR; Dusi S; Giannattasio M; Branzei D Nat Commun; 2022 May; 13(1):2480. PubMed ID: 35513396 [TBL] [Abstract][Full Text] [Related]
14. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination. Orta ML; Pastor N; Burgos-Morón E; Domínguez I; Calderón-Montaño JM; Huertas Castaño C; López-Lázaro M; Helleday T; Mateos S DNA Repair (Amst); 2017 Sep; 57():116-124. PubMed ID: 28732309 [TBL] [Abstract][Full Text] [Related]
15. A dual role of BRCA1 in two distinct homologous recombination mediated repair in response to replication arrest. Feng Z; Zhang J Nucleic Acids Res; 2012 Jan; 40(2):726-38. PubMed ID: 21954437 [TBL] [Abstract][Full Text] [Related]
16. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Somyajit K; Saxena S; Babu S; Mishra A; Nagaraju G Nucleic Acids Res; 2015 Nov; 43(20):9835-55. PubMed ID: 26354865 [TBL] [Abstract][Full Text] [Related]
17. Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA. Vázquez MV; Rojas V; Tercero JA DNA Repair (Amst); 2008 Oct; 7(10):1693-704. PubMed ID: 18640290 [TBL] [Abstract][Full Text] [Related]
18. Wrestling off RAD51: a novel role for RecQ helicases. Wu L Bioessays; 2008 Apr; 30(4):291-5. PubMed ID: 18348153 [TBL] [Abstract][Full Text] [Related]
19. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection. Abeyta A; Castella M; Jacquemont C; Taniguchi T Cell Cycle; 2017 Feb; 16(4):335-347. PubMed ID: 27892797 [TBL] [Abstract][Full Text] [Related]
20. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Moriel-Carretero M; Aguilera A Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]