BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28325114)

  • 1. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Ag
    Srivastava R
    J Biomol Struct Dyn; 2018 Mar; 36(4):1050-1062. PubMed ID: 28325114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC-Aun and AT-Aun (n = 4, 8) complexes.
    Kumar A; Mishra PC; Suhai S
    J Phys Chem A; 2006 Jun; 110(24):7719-27. PubMed ID: 16774220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of small Ag clusters bound to DNA bases.
    Soto-Verdugo V; Metiu H; Gwinn E
    J Chem Phys; 2010 May; 132(19):195102. PubMed ID: 20499990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemphyschem; 2006 Sep; 7(9):1971-9. PubMed ID: 16888742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct assessment of interresidue forces in Watson-Crick base pairs using theoretical compliance constants.
    Grunenberg J
    J Am Chem Soc; 2004 Dec; 126(50):16310-1. PubMed ID: 15600318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.
    Czyznikowska Z; Góra RW; Zaleśny R; Lipkowski P; Jarzembska KN; Dominiak PM; Leszczynski J
    J Phys Chem B; 2010 Jul; 114(29):9629-44. PubMed ID: 20604521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver(I)-Mediated Base Pairs in DNA Sequences Containing 7-Deazaguanine/Cytosine: towards DNA with Entirely Metallated Watson-Crick Base Pairs.
    Méndez-Arriaga JM; Maldonado CR; Dobado JA; Galindo MA
    Chemistry; 2018 Mar; 24(18):4583-4589. PubMed ID: 29226453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmark studies on the building blocks of DNA. 3. Watson-Crick and stacked base pairs.
    Szalay PG; Watson T; Perera A; Lotrich V; Bartlett RJ
    J Phys Chem A; 2013 Apr; 117(15):3149-57. PubMed ID: 23473108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between hydrogen atoms transfer and stacking interaction in adenine-thymine/guanine-cytosine complexes: a theoretical study.
    Villani G
    J Phys Chem B; 2014 May; 118(20):5439-52. PubMed ID: 24813562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of a positron to nucleic base molecules and their pairs.
    Koyanagi K; Kita Y; Shigeta Y; Tachikawa M
    Chemphyschem; 2013 Oct; 14(15):3458-62. PubMed ID: 24030868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study.
    Gorb L; Podolyan Y; Dziekonski P; Sokalski WA; Leszczynski J
    J Am Chem Soc; 2004 Aug; 126(32):10119-29. PubMed ID: 15303888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver- and gold-mediated nucleobase bonding.
    Acioli PH; Srinivas S
    J Mol Model; 2014 Aug; 20(8):2391. PubMed ID: 25107359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structural and energetic properties of the four configurations of the A.T and G.C DNA base pairs].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):104-10. PubMed ID: 24319980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach.
    Hesselmann A; Jansen G; Schütz M
    J Am Chem Soc; 2006 Sep; 128(36):11730-1. PubMed ID: 16953592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the binding mechanism between N6-methyladenine and natural DNA bases.
    Song QX; Ding ZD; Liu JH; Li Y; Wang HJ
    J Mol Model; 2013 Mar; 19(3):1089-98. PubMed ID: 23138643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.
    Swasey SM; Leal LE; Lopez-Acevedo O; Pavlovich J; Gwinn EG
    Sci Rep; 2015 May; 5():10163. PubMed ID: 25973536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fingerprints of bonding motifs in DNA duplexes of adenine and thymine revealed from circular dichroism: synchrotron radiation experiments and TDDFT calculations.
    Munksgaard Nielsen L; Holm AI; Varsano D; Kadhane U; Hoffmann SV; Di Felice R; Rubio A; Brøndsted Nielsen S
    J Phys Chem B; 2009 Jul; 113(28):9614-9. PubMed ID: 19537699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.