These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 28325473)
1. Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program. Charney RM; Forouzmand E; Cho JS; Cheung J; Paraiso KD; Yasuoka Y; Takahashi S; Taira M; Blitz IL; Xie X; Cho KW Dev Cell; 2017 Mar; 40(6):595-607.e4. PubMed ID: 28325473 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Chiu WT; Charney Le R; Blitz IL; Fish MB; Li Y; Biesinger J; Xie X; Cho KW Development; 2014 Dec; 141(23):4537-47. PubMed ID: 25359723 [TBL] [Abstract][Full Text] [Related]
3. FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development. Reid CD; Steiner AB; Yaklichkin S; Lu Q; Wang S; Hennessy M; Kessler DS Dev Biol; 2016 Jun; 414(1):34-44. PubMed ID: 27085753 [TBL] [Abstract][Full Text] [Related]
4. Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation. Paraiso KD; Blitz IL; Coley M; Cheung J; Sudou N; Taira M; Cho KWY Cell Rep; 2019 Jun; 27(10):2962-2977.e5. PubMed ID: 31167141 [TBL] [Abstract][Full Text] [Related]
5. Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus. Gupta R; Wills A; Ucar D; Baker J Dev Biol; 2014 Nov; 395(1):38-49. PubMed ID: 25205067 [TBL] [Abstract][Full Text] [Related]
6. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Kim SW; Yoon SJ; Chuong E; Oyolu C; Wills AE; Gupta R; Baker J Dev Biol; 2011 Sep; 357(2):492-504. PubMed ID: 21741376 [TBL] [Abstract][Full Text] [Related]
7. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin. Slagle CE; Aoki T; Burdine RD PLoS Genet; 2011 May; 7(5):e1002072. PubMed ID: 21637786 [TBL] [Abstract][Full Text] [Related]
8. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Paraiso KD; Cho JS; Yong J; Cho KWY Curr Top Dev Biol; 2020; 139():35-60. PubMed ID: 32450966 [TBL] [Abstract][Full Text] [Related]
9. New roles for FoxH1 in patterning the early embryo. Kofron M; Puck H; Standley H; Wylie C; Old R; Whitman M; Heasman J Development; 2004 Oct; 131(20):5065-78. PubMed ID: 15459100 [TBL] [Abstract][Full Text] [Related]
10. An essential role for transcription before the MBT in Xenopus laevis. Skirkanich J; Luxardi G; Yang J; Kodjabachian L; Klein PS Dev Biol; 2011 Sep; 357(2):478-91. PubMed ID: 21741375 [TBL] [Abstract][Full Text] [Related]
11. Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin. Fukuda M; Takahashi S; Haramoto Y; Onuma Y; Kim YJ; Yeo CY; Ishiura S; Asashima M Int J Dev Biol; 2010; 54(1):81-92. PubMed ID: 20013651 [TBL] [Abstract][Full Text] [Related]
12. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. Nelson AC; Cutty SJ; Niini M; Stemple DL; Flicek P; Houart C; Bruce AE; Wardle FC BMC Biol; 2014 Oct; 12():81. PubMed ID: 25277163 [TBL] [Abstract][Full Text] [Related]
13. HEB and E2A function as SMAD/FOXH1 cofactors. Yoon SJ; Wills AE; Chuong E; Gupta R; Baker JC Genes Dev; 2011 Aug; 25(15):1654-61. PubMed ID: 21828274 [TBL] [Abstract][Full Text] [Related]
14. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Yasuoka Y; Suzuki Y; Takahashi S; Someya H; Sudou N; Haramoto Y; Cho KW; Asashima M; Sugano S; Taira M Nat Commun; 2014 Jul; 5():4322. PubMed ID: 25005894 [TBL] [Abstract][Full Text] [Related]
15. High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Collart C; Owens ND; Bhaw-Rosun L; Cooper B; De Domenico E; Patrushev I; Sesay AK; Smith JN; Smith JC; Gilchrist MJ Development; 2014 May; 141(9):1927-39. PubMed ID: 24757007 [TBL] [Abstract][Full Text] [Related]
16. FoxD3 and Grg4 physically interact to repress transcription and induce mesoderm in Xenopus. Yaklichkin S; Steiner AB; Lu Q; Kessler DS J Biol Chem; 2007 Jan; 282(4):2548-57. PubMed ID: 17138566 [TBL] [Abstract][Full Text] [Related]
17. Engagement of Foxh1 in chromatin regulation revealed by protein interactome analyses. Zhou JJ; Pham PD; Han H; Wang W; Cho KWY Dev Growth Differ; 2022 Aug; 64(6):297-305. PubMed ID: 35848281 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos. Cheong SM; Kim H; Han JK J Biol Chem; 2009 Jun; 284(25):17052-17060. PubMed ID: 19389709 [TBL] [Abstract][Full Text] [Related]
19. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Jansen C; Paraiso KD; Zhou JJ; Blitz IL; Fish MB; Charney RM; Cho JS; Yasuoka Y; Sudou N; Bright AR; Wlizla M; Veenstra GJC; Taira M; Zorn AM; Mortazavi A; Cho KWY Cell Rep; 2022 Feb; 38(7):110364. PubMed ID: 35172134 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of mesoderm genes by MEF2D during early Xenopus development. Kolpakova A; Katz S; Keren A; Rojtblat A; Bengal E PLoS One; 2013; 8(7):e69693. PubMed ID: 23894525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]