BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28325917)

  • 1. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple robot suggests physical interlimb communication is essential for quadruped walking.
    Owaki D; Kano T; Nagasawa K; Tero A; Ishiguro A
    J R Soc Interface; 2013 Jan; 10(78):20120669. PubMed ID: 23097501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Gait Transitions of Sprawling Quadruped Locomotion by Sensory-Driven Body-Limb Coordination Mechanisms.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Front Neurorobot; 2021; 15():645731. PubMed ID: 34393748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and Slow Adaptations of Interlimb Coordination
    Aoi S; Amano T; Fujiki S; Senda K; Tsuchiya K
    Front Robot AI; 2021; 8():697612. PubMed ID: 34422913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trotting, pacing and bounding by a quadruped robot.
    Raibert MH
    J Biomech; 1990; 23 Suppl 1():79-98. PubMed ID: 2081747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains.
    Shafiee M; Bellegarda G; Ijspeert A
    Nat Commun; 2024 Apr; 15(1):3073. PubMed ID: 38594288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple decentralized control mechanism that enables limb adjustment for adaptive quadruped running.
    Fukuhara A; Koizumi Y; Baba T; Suzuki S; Kano T; Ishiguro A
    Proc Biol Sci; 2021 Nov; 288(1962):20211622. PubMed ID: 34727718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BigDog-inspired studies in the locomotion of goats and dogs.
    Lee DV; Biewener AA
    Integr Comp Biol; 2011 Jul; 51(1):190-202. PubMed ID: 21659392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.