These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28326236)

  • 1. The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX).
    Pessina F; Spitzer D
    Beilstein J Nanotechnol; 2017; 8():452-466. PubMed ID: 28326236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) from polymer-bonded explosives (PBXN-109) into water by artificial weathering.
    Kumar M; Ladyman MK; Mai N; Temple T; Coulon F
    Chemosphere; 2017 Feb; 169():604-608. PubMed ID: 27907880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock-Induced Hot Spot Formation and Spalling in 1,3,5-trinitroperhydro-1,3,5-triazine Containing a Cube Void.
    Zhang Y; Liu H; Yang Z; Li Q; He Y
    ACS Omega; 2019 May; 4(5):8031-8038. PubMed ID: 31459892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct detection of RDX vapor using a conjugated polymer network.
    Gopalakrishnan D; Dichtel WR
    J Am Chem Soc; 2013 Jun; 135(22):8357-62. PubMed ID: 23641956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition of energetic materials. 5. reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point.
    Maharrey S; Behrens R
    J Phys Chem A; 2005 Dec; 109(49):11236-49. PubMed ID: 16331907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standoff Photoacoustic Spectroscopy of Explosives.
    Marcus LS; Holthoff EL; Pellegrino PM
    Appl Spectrosc; 2017 May; 71(5):833-838. PubMed ID: 27340220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles.
    Naja G; Halasz A; Thiboutot S; Ampleman G; Hawari J
    Environ Sci Technol; 2008 Jun; 42(12):4364-70. PubMed ID: 18605556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study of ANTA and NTO derivatives.
    Moxnes JF; Frøyland Ø; Risdal T
    J Mol Model; 2017 Aug; 23(8):240. PubMed ID: 28744746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
    Wang C; Huang H; Bunes BR; Wu N; Xu M; Yang X; Yu L; Zang L
    Sci Rep; 2016 May; 6():25015. PubMed ID: 27146290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX.
    Best EP; Sprecher SL; Larson SL; Fredrickson HL; Bader DF
    Chemosphere; 1999 Jun; 38(14):3383-96. PubMed ID: 10390848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphic Phase Control of RDX-Based Explosives.
    Brady JJ; Argirakis BL; Gordon AD; Lareau RT; Smith BT
    Appl Spectrosc; 2018 Jan; 72(1):28-36. PubMed ID: 28537423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A field-deployed surface plasmon resonance (SPR) sensor for RDX quantification in environmental waters.
    Brulé T; Granger G; Bukar N; Deschênes-Rancourt C; Havard T; Schmitzer AR; Martel R; Masson JF
    Analyst; 2017 Jun; 142(12):2161-2168. PubMed ID: 28548156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus).
    Smith JN; Liu J; Espino MA; Cobb GP
    Chemosphere; 2007 May; 67(11):2267-73. PubMed ID: 17275885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity.
    Warner CM; Gust KA; Stanley JK; Habib T; Wilbanks MS; Garcia-Reyero N; Perkins EJ
    Environ Sci Technol; 2012 Jul; 46(14):7790-8. PubMed ID: 22697906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance.
    Zhang J; Dharavath S; Mitchell LA; Parrish DA; Shreeve JM
    J Am Chem Soc; 2016 Jun; 138(24):7500-3. PubMed ID: 27267735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic 4,4'-Oxybis[3,3'-(1-hydroxytetrazolyl)]furazan and Its Salts.
    Tang Y; He C; Imler GH; Parrish DA; Shreeve JM
    Chem Asian J; 2016 Nov; 11(21):3113-3117. PubMed ID: 27557403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.
    Emmons ED; Farrell ME; Holthoff EL; Tripathi A; Green N; Moon RP; Guicheteau JA; Christesen SD; Pellegrino PM; Fountain AW
    Appl Spectrosc; 2012 Jun; 66(6):628-35. PubMed ID: 22732532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor.
    Eberly JO; Mayo ML; Carr MR; Crocker FH; Indest KJ
    J Gen Appl Microbiol; 2019 Jul; 65(3):145-150. PubMed ID: 30700648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of explosives using a hollow cathode discharge ion source.
    Habib A; Chen LC; Usmanov DT; Yu Z; Hiraoka K
    Rapid Commun Mass Spectrom; 2015 Apr; 29(7):601-10. PubMed ID: 26212277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings.
    Biswas TS; Miriyala N; Doolin C; Liu X; Thundat T; Davis JP
    Anal Chem; 2014 Nov; 86(22):11368-72. PubMed ID: 25329453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.