These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 28326440)

  • 1. Effects of visual motion consistent or inconsistent with gravity on postural sway.
    Balestrucci P; Daprati E; Lacquaniti F; Maffei V
    Exp Brain Res; 2017 Jul; 235(7):1999-2010. PubMed ID: 28326440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dynamic visual motion on perception of postural vertical through the modulation of prior knowledge of gravity.
    Tani K; Ishimaru S; Yamamoto S; Kodaka Y; Kushiro K
    Neurosci Lett; 2020 Jan; 716():134687. PubMed ID: 31838018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility.
    Laboissière R; Letievant JC; Ionescu E; Barraud PA; Mazzuca M; Cian C
    PLoS One; 2015; 10(12):e0144466. PubMed ID: 26657203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Framing visual roll-motion affects postural sway and the subjective visual vertical.
    Lubeck AJ; Bos JE; Stins JF
    Atten Percept Psychophys; 2016 Nov; 78(8):2612-2620. PubMed ID: 27363414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phobic postural vertigo. Body sway during visually induced roll vection.
    Querner V; Krafczyk S; Dieterich M; Brandt T
    Exp Brain Res; 2002 Apr; 143(3):269-75. PubMed ID: 11889504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the gravity direction in the environment and the visual polarity and body direction on the perception of object motion.
    Miwa T; Hisakata R; Kaneko H
    Vision Res; 2019 Nov; 164():12-23. PubMed ID: 31542657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual and proprioceptive contributions to postural control of upright stance in unilateral vestibulopathy.
    Eysel-Gosepath K; McCrum C; Epro G; Brüggemann GP; Karamanidis K
    Somatosens Mot Res; 2016 Jun; 33(2):72-8. PubMed ID: 27166786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of visual cues on upright postural control: differentiated effects of eyelids closure].
    Rougier P; Zanders E; Borlet E
    Rev Neurol (Paris); 2003 Feb; 159(2):180-8. PubMed ID: 12660570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability.
    Black FO; Paloski WH; Doxey-Gasway DD; Reschke MF
    Acta Otolaryngol Suppl; 1995; 520 Pt 2():450-4. PubMed ID: 8749187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of dynamic visual cues for postural control in children aged 7-12 years.
    Sparto PJ; Redfern MS; Jasko JG; Casselbrant ML; Mandel EM; Furman JM
    Exp Brain Res; 2006 Jan; 168(4):505-16. PubMed ID: 16151780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory organization of balance responses in children 3-6 years of age: a normative study with diagnostic implications.
    Foudriat BA; Di Fabio RP; Anderson JH
    Int J Pediatr Otorhinolaryngol; 1993 Oct; 27(3):255-71. PubMed ID: 8270364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual assessment of environmental stability modulates postural sway.
    Cooper N; Cant I; White MD; Meyer GF
    PLoS One; 2018; 13(11):e0206218. PubMed ID: 30412590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling human upright posture: velocity information is more accurate than position or acceleration.
    Jeka J; Kiemel T; Creath R; Horak F; Peterka R
    J Neurophysiol; 2004 Oct; 92(4):2368-79. PubMed ID: 15140910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness.
    Li R; Peterson N; Walter HJ; Rath R; Curry C; Stoffregen TA
    Gait Posture; 2018 Sep; 65():251-255. PubMed ID: 30558940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction of balance and perception of the upright are perceptually dissociable.
    Panic H; Panic AS; DiZio P; Lackner JR
    J Neurophysiol; 2015 Jun; 113(10):3600-9. PubMed ID: 25761954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging affects postural tracking of complex visual motion cues.
    Sotirakis H; Kyvelidou A; Mademli L; Stergiou N; Hatzitaki V
    Exp Brain Res; 2016 Sep; 234(9):2529-40. PubMed ID: 27126061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feedback induces opposite effects on elementary centre of gravity and centre of pressure minus centre of gravity motions in undisturbed upright stance.
    Rougier P
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):341-9. PubMed ID: 12689784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of visually simulated roll motion on vection and postural stabilization.
    Tanahashi S; Ujike H; Kozawa R; Ukai K
    J Neuroeng Rehabil; 2007 Oct; 4():39. PubMed ID: 17922922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of infant upright posture: sway less or sway differently?
    Chen LC; Metcalfe JS; Chang TY; Jeka JJ; Clark JE
    Exp Brain Res; 2008 Mar; 186(2):293-303. PubMed ID: 18057920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.