These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28326549)

  • 1. The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions.
    Kessler P; Marchot P; Silva M; Servent D
    J Neurochem; 2017 Aug; 142 Suppl 2():7-18. PubMed ID: 28326549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How three-finger-fold toxins interact with various cholinergic receptors.
    Fruchart-Gaillard C; Mourier G; Marquer C; Ménez A; Servent D
    J Mol Neurosci; 2006; 30(1-2):7-8. PubMed ID: 17192604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors.
    Servent D; Fruchart-Gaillard C
    J Neurochem; 2009 Jun; 109(5):1193-202. PubMed ID: 19457160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New α-adrenergic property for synthetic MTβ and CM-3 three-finger fold toxins from black mamba.
    Blanchet G; Upert G; Mourier G; Gilquin B; Gilles N; Servent D
    Toxicon; 2013 Dec; 75():160-7. PubMed ID: 23648423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors.
    Karlsson E; Jolkkonen M; Mulugeta E; Onali P; Adem A
    Biochimie; 2000; 82(9-10):793-806. PubMed ID: 11086210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine.
    Nirthanan S
    Biochem Pharmacol; 2020 Nov; 181():114168. PubMed ID: 32710970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae).
    Heyborne WH; Mackessy SP
    Biochimie; 2013 Oct; 95(10):1923-32. PubMed ID: 23851011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.
    Molgó J; Marchot P; Aráoz R; Benoit E; Iorga BI; Zakarian A; Taylor P; Bourne Y; Servent D
    J Neurochem; 2017 Aug; 142 Suppl 2(Suppl 2):41-51. PubMed ID: 28326551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MT9, a natural peptide from black mamba venom antagonizes the muscarinic type 2 receptor and reverses the M2R-agonist-induced relaxation in rat and human arteries.
    Ciolek J; Zoukimian C; Dhot J; Burban M; Triquigneaux M; Lauzier B; Guimbert C; Boturyn D; Ferron M; Ciccone L; Tepshi L; Stura E; Legrand P; Robin P; Mourier G; Schaack B; Fellah I; Blanchet G; Gauthier-Erfanian C; Beroud R; Servent D; De Waard M; Gilles N
    Biomed Pharmacother; 2022 Jun; 150():113094. PubMed ID: 35658242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic strategies of predominant toxins in snake venoms.
    Xiong S; Huang C
    Toxicol Lett; 2018 May; 287():142-154. PubMed ID: 29428543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake toxins from mamba venoms: unique tools for the physiologist.
    Rowan EG; Harvey AL
    Acta Chim Slov; 2011 Dec; 58(4):689-92. PubMed ID: 24061116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets.
    Kini RM; Doley R
    Toxicon; 2010 Nov; 56(6):855-67. PubMed ID: 20670641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of Chemical Processes in the Human Brain. The Cholinergic Synapse-Mechanisms of Functioning and Control Methods.
    Varfolomeev SD; Bykov VI; Tsybenova SB
    Dokl Biochem Biophys; 2020 May; 492(1):147-151. PubMed ID: 32632593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of three-finger fold toxins creates ligands with original pharmacological profiles for muscarinic and adrenergic receptors.
    Fruchart-Gaillard C; Mourier G; Blanchet G; Vera L; Gilles N; Ménez R; Marcon E; Stura EA; Servent D
    PLoS One; 2012; 7(6):e39166. PubMed ID: 22720062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in cholinergic mechanisms: A preface for the ISCM2022 special issue.
    Kovarik Z; Soreq H
    J Neurochem; 2024 Apr; 168(4):334-338. PubMed ID: 38082541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscarinic toxins.
    Servent D; Blanchet G; Mourier G; Marquer C; Marcon E; Fruchart-Gaillard C
    Toxicon; 2011 Nov; 58(6-7):455-63. PubMed ID: 21906611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic modulation of the hippocampal region and memory function.
    Haam J; Yakel JL
    J Neurochem; 2017 Aug; 142 Suppl 2(Suppl 2):111-121. PubMed ID: 28791706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system.
    Jerusalinsky D; Kornisiuk E; Alfaro P; Quillfeldt J; Ferreira A; Rial VE; Durán R; Cerveñansky C
    Toxicon; 2000 Jun; 38(6):747-61. PubMed ID: 10695963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological functions of keratinocyte cholinergic receptors.
    Grando SA
    J Investig Dermatol Symp Proc; 1997 Aug; 2(1):41-8. PubMed ID: 9487015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preface: Cholinergic Mechanisms.
    Prado MAM; Marchot P; Silman I
    J Neurochem; 2017 Aug; 142 Suppl 2():3-6. PubMed ID: 28791707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.