These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28326657)
1. Ring Shuttling Controls Macroscopic Motion in a Three-Dimensional Printed Polyrotaxane Monolith. Lin Q; Hou X; Ke C Angew Chem Int Ed Engl; 2017 Apr; 56(16):4452-4457. PubMed ID: 28326657 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin. Li J; Ni X; Zhou Z; Leong KW J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604 [TBL] [Abstract][Full Text] [Related]
3. Thermoresponsive behavior of cationic polyrotaxane composed of multiple pentaethylenehexamine-grafted alpha-cyclodextrins threaded on poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymer. Yang C; Li J J Phys Chem B; 2009 Jan; 113(3):682-90. PubMed ID: 19143572 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin. Ni X; Cheng A; Li J J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular Nanostructures Based on Cyclodextrin and Poly(ethylene oxide): Syntheses, Structural Characterizations and Applications for Drug Delivery. Zheng Y; Wyman IW Polymers (Basel); 2016 May; 8(5):. PubMed ID: 30979290 [TBL] [Abstract][Full Text] [Related]
7. Drastic Change of Mechanical Properties of Polyrotaxane Bulk: ABA-BAB Sequence Change Depending on Ring Position. Uenuma S; Maeda R; Kato K; Mayumi K; Yokoyama H; Ito K ACS Macro Lett; 2019 Feb; 8(2):140-144. PubMed ID: 35619422 [TBL] [Abstract][Full Text] [Related]
8. High conversion synthesis of pyrene end functionalized polyrotaxane based on poly(ethylene oxide) and alpha-cyclodextrins. Jarroux N; Guégan P; Cheradame H; Auvray L J Phys Chem B; 2005 Dec; 109(50):23816-22. PubMed ID: 16375366 [TBL] [Abstract][Full Text] [Related]
9. Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. Wei H; Zhang Q; Yao Y; Liu L; Liu Y; Leng J ACS Appl Mater Interfaces; 2017 Jan; 9(1):876-883. PubMed ID: 27997104 [TBL] [Abstract][Full Text] [Related]
10. Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces. Inoue Y; Ye L; Ishihara K; Yui N Colloids Surf B Biointerfaces; 2012 Jan; 89():223-7. PubMed ID: 21974908 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids: synthesis, glucose-surfaced nanoparticles, and recognition with lectin. Dai XH; Dong CM; Yan D J Phys Chem B; 2008 Mar; 112(12):3644-52. PubMed ID: 18318528 [TBL] [Abstract][Full Text] [Related]
12. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Firestone MA; Wolf AC; Seifert S Biomacromolecules; 2003; 4(6):1539-49. PubMed ID: 14606878 [TBL] [Abstract][Full Text] [Related]
13. Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-Orbitrap. Przybylski C; Jarroux N Anal Chem; 2011 Nov; 83(22):8460-7. PubMed ID: 21958205 [TBL] [Abstract][Full Text] [Related]
14. Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells. Sekiya-Aoyama R; Arisaka Y; Hakariya M; Masuda H; Iwata T; Yoda T; Yui N Biomater Sci; 2021 Feb; 9(3):675-684. PubMed ID: 33559665 [TBL] [Abstract][Full Text] [Related]
15. Hierarchically Templated Synthesis of 3D-Printed Crosslinked Cyclodextrins for Lycopene Harvesting. Zhang M; Liu W; Lin Q; Ke C Small; 2023 Dec; 19(50):e2300323. PubMed ID: 37029456 [TBL] [Abstract][Full Text] [Related]
16. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester. Builes DH; Hernández-Ortiz JP; Corcuera MA; Mondragon I; Tercjak A ACS Appl Mater Interfaces; 2014 Jan; 6(2):1073-81. PubMed ID: 24354274 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Li J; Li X; Ni X; Wang X; Li H; Leong KW Biomaterials; 2006 Aug; 27(22):4132-40. PubMed ID: 16584769 [TBL] [Abstract][Full Text] [Related]
18. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide. Ma J; Wang P; Dong L; Ruan Y; Lu H J Colloid Interface Sci; 2019 Jan; 534():12-19. PubMed ID: 30196197 [TBL] [Abstract][Full Text] [Related]
19. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates. Kakinoki S; Yui N; Yamaoka T J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065 [TBL] [Abstract][Full Text] [Related]
20. Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers using the MARTINI force field. Nawaz S; Carbone P J Phys Chem B; 2014 Feb; 118(6):1648-59. PubMed ID: 24446682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]