BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 28327084)

  • 1. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I
    BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism.
    Horodyska J; Wimmers K; Reyer H; Trakooljul N; Mullen AM; Lawlor PG; Hamill RM
    BMC Genomics; 2018 Nov; 19(1):791. PubMed ID: 30384851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased expressions of genes and proteins involved in mitochondrial oxidation and antioxidant pathway in adipose tissue of pigs selected for a low residual feed intake.
    Louveau I; Vincent A; Tacher S; Gilbert H; Gondret F
    J Anim Sci; 2016 Dec; 94(12):5042-5054. PubMed ID: 28046150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle.
    Vincent A; Louveau I; Gondret F; Tréfeu C; Gilbert H; Lefaucheur L
    J Anim Sci; 2015 Jun; 93(6):2745-58. PubMed ID: 26115262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig.
    Jégou M; Gondret F; Vincent A; Tréfeu C; Gilbert H; Louveau I
    PLoS One; 2016; 11(1):e0146550. PubMed ID: 26752050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake.
    Liu H; Nguyen YT; Nettleton D; Dekkers JC; Tuggle CK
    BMC Genomics; 2016 Jan; 17():73. PubMed ID: 26801403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute systemic inflammatory response to lipopolysaccharide stimulation in pigs divergently selected for residual feed intake.
    Liu H; Feye KM; Nguyen YT; Rakhshandeh A; Loving CL; Dekkers JCM; Gabler NK; Tuggle CK
    BMC Genomics; 2019 Oct; 20(1):728. PubMed ID: 31610780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs.
    Le Naou T; Le Floc'h N; Louveau I; Gilbert H; Gondret F
    J Anim Sci; 2012 Dec; 90(13):4771-80. PubMed ID: 22871936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake.
    Horodyska J; Oster M; Reyer H; Mullen AM; Lawlor PG; Wimmers K; Hamill RM
    Meat Sci; 2018 Mar; 137():265-274. PubMed ID: 29247922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.
    Gondret F; Louveau I; Mourot J; Duclos MJ; Lagarrigue S; Gilbert H; van Milgen J
    J Anim Sci; 2014 Nov; 92(11):4865-77. PubMed ID: 25253805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific responses of antioxidant pathways to poor hygiene conditions in growing pigs divergently selected for feed efficiency.
    Sierżant K; Perruchot MH; Merlot E; Le Floc'h N; Gondret F
    BMC Vet Res; 2019 Oct; 15(1):341. PubMed ID: 31619228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection response and genetic parameters for residual feed intake in Yorkshire swine.
    Cai W; Casey DS; Dekkers JC
    J Anim Sci; 2008 Feb; 86(2):287-98. PubMed ID: 17998435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs.
    Messad F; Louveau I; Koffi B; Gilbert H; Gondret F
    BMC Genomics; 2019 Aug; 20(1):659. PubMed ID: 31419934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response.
    Horodyska J; Reyer H; Wimmers K; Trakooljul N; Lawlor PG; Hamill RM
    Mol Genet Genomics; 2019 Apr; 294(2):395-408. PubMed ID: 30483895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency.
    Lkhagvadorj S; Qu L; Cai W; Couture OP; Barb CR; Hausman GJ; Nettleton D; Anderson LL; Dekkers JC; Tuggle CK
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R494-507. PubMed ID: 19939971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference in short-term responses to a high-fiber diet in pigs divergently selected for residual feed intake.
    Montagne L; Loisel F; Le Naou T; Gondret F; Gilbert H; Le Gall M
    J Anim Sci; 2014 Apr; 92(4):1512-23. PubMed ID: 24496835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: divergent selection for residual feed intake in the growing pig.
    Gilbert H; Billon Y; Brossard L; Faure J; Gatellier P; Gondret F; Labussière E; Lebret B; Lefaucheur L; Le Floch N; Louveau I; Merlot E; Meunier-Salaün MC; Montagne L; Mormede P; Renaudeau D; Riquet J; Rogel-Gaillard C; van Milgen J; Vincent A; Noblet J
    Animal; 2017 Sep; 11(9):1427-1439. PubMed ID: 28118862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular alterations induced by a high-fat high-fiber diet in porcine adipose tissues: variations according to the anatomical fat location.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Louveau I; Causeur D
    BMC Genomics; 2016 Feb; 17():120. PubMed ID: 26892011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.