These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 28327091)
1. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies. Abo Alchamlat S; Farnir F BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091 [TBL] [Abstract][Full Text] [Related]
2. Aggregation of experts: an application in the field of "interactomics" (detection of interactions on the basis of genomic data). Abo Alchamlat S; Farnir F BMC Bioinformatics; 2018 Nov; 19(1):445. PubMed ID: 30497383 [TBL] [Abstract][Full Text] [Related]
3. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365 [TBL] [Abstract][Full Text] [Related]
4. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
5. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182 [TBL] [Abstract][Full Text] [Related]
6. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women. Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models. Russ D; Williams JA; Cardoso VR; Bravo-Merodio L; Pendleton SC; Aziz F; Acharjee A; Gkoutos GV PLoS One; 2022; 17(2):e0263390. PubMed ID: 35180244 [TBL] [Abstract][Full Text] [Related]
8. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. Guo X; Meng Y; Yu N; Pan Y BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145 [TBL] [Abstract][Full Text] [Related]
9. A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions. Yu W; Lee S; Park T Bioinformatics; 2016 Sep; 32(17):i605-i610. PubMed ID: 27587680 [TBL] [Abstract][Full Text] [Related]
10. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Leem S; Jeong HH; Lee J; Wee K; Sohn KA Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies. Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428 [TBL] [Abstract][Full Text] [Related]
12. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies. Han B; Chen XW BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368 [TBL] [Abstract][Full Text] [Related]
13. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Jing PJ; Shen HB Bioinformatics; 2015 Mar; 31(5):634-41. PubMed ID: 25338719 [TBL] [Abstract][Full Text] [Related]
14. Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions. Guan B; Zhao Y; Sun W Comput Biol Chem; 2018 Dec; 77():354-362. PubMed ID: 30466044 [TBL] [Abstract][Full Text] [Related]
15. Identifying genetic interactions in genome-wide data using Bayesian networks. Jiang X; Barmada MM; Visweswaran S Genet Epidemiol; 2010 Sep; 34(6):575-81. PubMed ID: 20568290 [TBL] [Abstract][Full Text] [Related]
16. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks. Han B; Chen XW; Talebizadeh Z; Xu H BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790 [TBL] [Abstract][Full Text] [Related]
17. Gene-Gene Interactions Detection Using a Two-stage Model. Wang Z; Sul JH; Snir S; Lozano JA; Eskin E J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811 [TBL] [Abstract][Full Text] [Related]
18. A comment on two-locus epistatic interaction models for genome-wide association studies. Sohn KA; Wee K J Bioinform Comput Biol; 2015 Dec; 13(6):1571004. PubMed ID: 26260855 [TBL] [Abstract][Full Text] [Related]
19. Multivariate Cluster-Based Multifactor Dimensionality Reduction to Identify Genetic Interactions for Multiple Quantitative Phenotypes. Kim H; Jeong HB; Jung HY; Park T; Park M Biomed Res Int; 2019; 2019():4578983. PubMed ID: 31380425 [TBL] [Abstract][Full Text] [Related]
20. GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies. Peng YZ; Lin Y; Huang Y; Li Y; Luo G; Liao J BMC Genomics; 2021 Dec; 22(Suppl 1):910. PubMed ID: 34930147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]