These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28327091)

  • 21. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial rank-based multifactor dimensionality reduction to detect gene-gene interactions for multivariate phenotypes.
    Park M; Jeong HB; Lee JH; Park T
    BMC Bioinformatics; 2021 Oct; 22(1):480. PubMed ID: 34607566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Comparative Study on Multifactor Dimensionality Reduction Methods for Detecting Gene-Gene Interactions with the Survival Phenotype.
    Lee S; Kim Y; Kwon MS; Park T
    Biomed Res Int; 2015; 2015():671859. PubMed ID: 26339630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A whole-genome simulator capable of modeling high-order epistasis for complex disease.
    Yang W; Gu CC
    Genet Epidemiol; 2013 Nov; 37(7):686-94. PubMed ID: 24114848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions.
    Guan B; Zhao Y
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease.
    Yin Y; Guan B; Zhao Y; Li Y
    Biomed Res Int; 2020; 2020():5610658. PubMed ID: 32908899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference.
    Guo X; Zhang J; Cai Z; Du DZ; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of SNP-SNP interaction for chronic dialysis patients.
    Yang CH; Weng ZJ; Chuang LY; Yang CS
    Comput Biol Med; 2017 Apr; 83():94-101. PubMed ID: 28254616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting epistasis in human complex traits.
    Wei WH; Hemani G; Haley CS
    Nat Rev Genet; 2014 Nov; 15(11):722-33. PubMed ID: 25200660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
    Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W
    Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies.
    Yang CH; Chuang LY; Lin YD
    Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies.
    Piriyapongsa J; Ngamphiw C; Intarapanich A; Kulawonganunchai S; Assawamakin A; Bootchai C; Shaw PJ; Tongsima S
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S2. PubMed ID: 23281813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting genetic interactions in pathway-based genome-wide association studies.
    Huang A; Martin ER; Vance JM; Cai X
    Genet Epidemiol; 2014 May; 38(4):300-9. PubMed ID: 24719383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FEPI-MB: identifying SNPs-disease association using a Markov Blanket-based approach.
    Han B; Chen XW; Talebizadeh Z
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S3. PubMed ID: 22168374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning genetic epistasis using Bayesian network scoring criteria.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S
    BMC Bioinformatics; 2011 Mar; 12():89. PubMed ID: 21453508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS.
    Greene CS; Sinnott-Armstrong NA; Himmelstein DS; Park PJ; Moore JH; Harris BT
    Bioinformatics; 2010 Mar; 26(5):694-5. PubMed ID: 20081222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel method to identify high order gene-gene interactions in genome-wide association studies: gene-based MDR.
    Oh S; Lee J; Kwon MS; Weir B; Ha K; Park T
    BMC Bioinformatics; 2012 Jun; 13 Suppl 9(Suppl 9):S5. PubMed ID: 22901090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel methods for epistasis detection in genome-wide association studies.
    Slim L; Chatelain C; Azencott CA; Vert JP
    PLoS One; 2020; 15(11):e0242927. PubMed ID: 33253293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological knowledge-driven analysis of epistasis in human GWAS with application to lipid traits.
    Ma L; Keinan A; Clark AG
    Methods Mol Biol; 2015; 1253():35-45. PubMed ID: 25403526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Filter-free exhaustive odds ratio-based genome-wide interaction approach pinpoints evidence for interaction in the HLA region in psoriasis.
    Grange L; Bureau JF; Nikolayeva I; Paul R; Van Steen K; Schwikowski B; Sakuntabhai A
    BMC Genet; 2015 Feb; 16():11. PubMed ID: 25655172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.