BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28327297)

  • 21. Facile green synthesis of bismuth sulfide radiosensitizer
    Nosrati H; Abhari F; Charmi J; Rahmati M; Johari B; Azizi S; Rezaeejam H; Danafar H
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3832-3838. PubMed ID: 31556316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High toxicity of Bi(OH)
    Bogusz K; Tehei M; Cardillo D; Lerch M; Rosenfeld A; Dou SX; Liu HK; Konstantinov K
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():958-967. PubMed ID: 30274133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticle dose enhancement of synchrotron radiation in PRESAGE dosimeters.
    Gagliardi FM; Franich RD; Geso M
    J Synchrotron Radiat; 2020 Nov; 27(Pt 6):1590-1600. PubMed ID: 33147183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective Radiotherapy in Tumor Assisted by
    Yu H; Yang Y; Jiang T; Zhang X; Zhao Y; Pang G; Feng Y; Zhang S; Wang F; Wang Y; Wang Y; Zhang LW
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27536-27547. PubMed ID: 31294958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy.
    Shahbazi-Gahrouei D; Choghazardi Y; Kazemzadeh A; Naseri P; Shahbazi-Gahrouei S
    IET Nanobiotechnol; 2023 Jun; 17(4):302-311. PubMed ID: 37139612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy.
    Sisin NNT; Abdul Razak K; Zainal Abidin S; Che Mat NF; Abdullah R; Ab Rashid R; Khairil Anuar MA; Mohd Zainudin NH; Tagiling N; Mat Nawi N; Rahman WN
    Int J Nanomedicine; 2019; 14():9941-9954. PubMed ID: 31908451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of IUdR on Rat 9L glioma cell survival for 25-35 keV photon-activated auger electron therapy.
    Alvarez D; Hogstrom KR; Brown TA; Ii KL; Dugas JP; Ham K; Varnes ME
    Radiat Res; 2014 Dec; 182(6):607-17. PubMed ID: 25409122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer.
    Chen Y; Zhao G; Wang S; He Y; Han S; Du C; Li S; Fan Z; Wang C; Wang J
    Biomater Sci; 2019 Aug; 7(8):3450-3459. PubMed ID: 31268067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased radiotoxicity in two cancerous cell lines irradiated by low and high energy photons in the presence of thio-glucose bound gold nanoparticles.
    Soleymanifard S; Rostami A; Aledavood SA; Matin MM; Sazgarnia A
    Int J Radiat Biol; 2017 Apr; 93(4):407-415. PubMed ID: 27921518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models.
    Engels E; Bakr S; Bolst D; Sakata D; Li N; Lazarakis P; McMahon SJ; Ivanchenko V; Rosenfeld AB; Incerti S; Kyriakou I; Emfietzoglou D; Lerch MLF; Tehei M; Corde S; Guatelli S
    Phys Med Biol; 2020 Nov; 65(22):225017. PubMed ID: 32916674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer.
    Deng J; Xu S; Hu W; Xun X; Zheng L; Su M
    Biomaterials; 2018 Feb; 154():24-33. PubMed ID: 29120816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation.
    Zhao F; Ming J; Zhou Y; Fan L
    Cancer Chemother Pharmacol; 2016 May; 77(5):963-72. PubMed ID: 27011212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy.
    McMahon SJ; Hyland WB; Muir MF; Coulter JA; Jain S; Butterworth KT; Schettino G; Dickson GR; Hounsell AR; O'Sullivan JM; Prise KM; Hirst DG; Currell FJ
    Radiother Oncol; 2011 Sep; 100(3):412-6. PubMed ID: 21924786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte Carlo-based calculation of nano-scale dose enhancement factor and relative biological effectiveness in using different nanoparticles as a radiosensitizer.
    Robatjazi M; Baghani HR; Rostami A; Pashazadeh A
    Int J Radiat Biol; 2021; 97(9):1289-1298. PubMed ID: 34047663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimising element choice for nanoparticle radiosensitisers.
    McMahon SJ; Paganetti H; Prise KM
    Nanoscale; 2016 Jan; 8(1):581-9. PubMed ID: 26645621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanozyme-Incorporated Biodegradable Bismuth Mesoporous Radiosensitizer for Tumor Microenvironment-Modulated Hypoxic Tumor Thermoradiotherapy.
    Zhang J; Liu Y; Wang X; Du J; Song K; Li B; Chang H; Ouyang R; Miao Y; Sun Y; Li Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57768-57781. PubMed ID: 33326213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoscale radiotherapy with hafnium oxide nanoparticles.
    Maggiorella L; Barouch G; Devaux C; Pottier A; Deutsch E; Bourhis J; Borghi E; Levy L
    Future Oncol; 2012 Sep; 8(9):1167-81. PubMed ID: 23030491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study.
    Cho SH
    Phys Med Biol; 2005 Aug; 50(15):N163-73. PubMed ID: 16030374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles.
    Martínez-Rovira I; Prezado Y
    Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.