BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28327297)

  • 41. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy.
    Kowalik M; Masternak J; Barszcz B
    Curr Med Chem; 2019; 26(4):729-759. PubMed ID: 28971764
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thulium oxide nanoparticles as radioenhancers for the treatment of metastatic cutaneous squamous cell carcinoma.
    Perry J; Minaei E; Engels E; Ashford BG; McAlary L; Clark JR; Gupta R; Tehei M; Corde S; Carolan M; Ranson M
    Phys Med Biol; 2020 Nov; 65(21):215018. PubMed ID: 32726756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dosimetric characterisation of bismuth shields in CT: measurements and Monte Carlo simulations.
    Kim S; Yoshizumi TT; Frush DP; Anderson-Evans C; Toncheva G
    Radiat Prot Dosimetry; 2009 Jan; 133(2):105-10. PubMed ID: 19264831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. β-elemene enhances the radiosensitivity of gastric cancer cells by inhibiting Pak1 activation.
    Liu JS; Che XM; Chang S; Qiu GL; He SC; Fan L; Zhao W; Zhang ZL; Wang SF
    World J Gastroenterol; 2015 Sep; 21(34):9945-56. PubMed ID: 26379399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: a Monte Carlo study.
    Kirkby C; Ghasroddashti E
    Med Phys; 2015 Feb; 42(2):1119-28. PubMed ID: 25652523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of dextran-coated iron oxide nanoparticles in enhancing the radiosensitivity of cancerous cells in radiotherapy with high-energy electron beams.
    Rezaei M; Khoshgard K; Hosseinzadeh L; Haghparast A; Eivazi MT
    J Cancer Res Ther; 2019; 15(6):1352-1358. PubMed ID: 31898672
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bismuth Nanoparticles Increase Effectiveness of Proton Therapy of Ehrlich Carcinoma.
    Filimonova MV; Soldatova OV; Shitova AA; Filimonov AS; Rybachuk VA; Kosachenko AO; Nikolaev KA; Demyashkin GA; Popov AA; Zelepukin IV; Kabashin AV; Deev SM; Kaprin AD; Shegay PV; Ivanov SA; Zavestovskaya IN; Koryakin SN
    Bull Exp Biol Med; 2024 Mar; 176(5):626-630. PubMed ID: 38730109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: a Monte Carlo study.
    Perisinakis K; Raissaki M; Theocharopoulos N; Damilakis J; Gourtsoyiannis N
    Med Phys; 2005 Apr; 32(4):1024-30. PubMed ID: 15895586
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists.
    Rabus H; Gargioni E; Li WB; Nettelbeck H; Villagrasa C
    Phys Med Biol; 2019 Aug; 64(15):155016. PubMed ID: 31300616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location.
    Lechtman E; Chattopadhyay N; Cai Z; Mashouf S; Reilly R; Pignol JP
    Phys Med Biol; 2011 Aug; 56(15):4631-47. PubMed ID: 21734337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma?
    Wu H; Lin J; Liu P; Huang Z; Zhao P; Jin H; Wang C; Wen L; Gu N
    Biomaterials; 2015 Sep; 62():47-57. PubMed ID: 26022979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metallic nanoparticle radiosensitisation of ion radiotherapy: A review.
    Peukert D; Kempson I; Douglass M; Bezak E
    Phys Med; 2018 Mar; 47():121-128. PubMed ID: 29609813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique.
    Kakade NR; Sharma SD
    J Cancer Res Ther; 2015; 11(1):94-7. PubMed ID: 25879344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gold microspheres: a selective technique for producing biologically effective dose enhancement.
    Herold DM; Das IJ; Stobbe CC; Iyer RV; Chapman JD
    Int J Radiat Biol; 2000 Oct; 76(10):1357-64. PubMed ID: 11057744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy response of an aluminium oxide detector in kilovoltage and megavoltage photon beams: an EGSnrc Monte Carlo simulation study.
    Agyingi EO; Mobit PN; Sandison GA
    Radiat Prot Dosimetry; 2006; 118(1):28-31. PubMed ID: 16046555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles: An analytical approach to the relative biological effectiveness.
    Melo-Bernal W; Chernov V; Chernov G; Barboza-Flores M
    Appl Radiat Isot; 2018 Aug; 138():50-55. PubMed ID: 28624366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation.
    Machida H; Matsumoto Y; Shirai M; Kubota N
    Int J Radiat Biol; 2003 Dec; 79(12):973-80. PubMed ID: 14713575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bismuth oxide nanoparticles as agents of radiation dose enhancement in intraoperative radiotherapy.
    Alyani Nezhad Z; Geraily G; Hataminia F; Parwaie W; Ghanbari H; Gholami S
    Med Phys; 2021 Mar; 48(3):1417-1426. PubMed ID: 33387376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.