BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28327297)

  • 81. Poster - Thur Eve - 70: Quantification of tumour dose enhancement at kilo-voltage energies due to the presence of gold nanoparticles during radiation therapy: EGSnrcMP Monte Carlo study.
    Fleck A; Jiang R; Schaly B; Charland P; Osei E
    Med Phys; 2012 Jul; 39(7Part4):4638. PubMed ID: 28516632
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation.
    Klein S; Sommer A; Distel LV; Neuhuber W; Kryschi C
    Biochem Biophys Res Commun; 2012 Aug; 425(2):393-7. PubMed ID: 22842461
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia.
    Armour EP; Wang ZH; Corry PM; Martinez A
    Cancer Res; 1991 Jun; 51(12):3088-95. PubMed ID: 2039988
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Study of the effect of ceramic Ta
    McKinnon S; Engels E; Tehei M; Konstantinov K; Corde S; Oktaria S; Incerti S; Lerch M; Rosenfeld A; Guatelli S
    Phys Med; 2016 Oct; 32(10):1216-1224. PubMed ID: 27666955
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inhibition of ataxia-telangiectasia mutated by antisense oligonucleotide nanoparticles induces radiosensitization of head and neck squamous-cell carcinoma in mice.
    Zou J; Qiao X; Ye H; Zhang Y; Xian J; Zhao H; Liu S
    Cancer Biother Radiopharm; 2009 Jun; 24(3):339-46. PubMed ID: 19435407
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Autophagy associated cytotoxicity and cellular uptake mechanisms of bismuth nanoparticles in human kidney cells.
    Liu Y; Zhuang J; Zhang X; Yue C; Zhu N; Yang L; Wang Y; Chen T; Wang Y; Zhang LW
    Toxicol Lett; 2017 Jun; 275():39-48. PubMed ID: 28445739
    [TBL] [Abstract][Full Text] [Related]  

  • 87. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Investigations of different kilovoltage X-ray energy for three-dimensional converging stereotactic radiotherapy system: Monte Carlo simulations with CT data.
    Deloar HM; Kunieda E; Kawase T; Tsunoo T; Saitoh H; Ozaki M; Saito K; Takagi S; Sato O; Fujisaki T; Myojoyama A; Sorell G
    Med Phys; 2006 Dec; 33(12):4635-42. PubMed ID: 17278816
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations.
    McKinnon S; Guatelli S; Incerti S; Ivanchenko V; Konstantinov K; Corde S; Lerch M; Tehei M; Rosenfeld A
    Phys Med; 2016 Dec; 32(12):1584-1593. PubMed ID: 27916516
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Nanocellulose templated growth of ultra-small bismuth nanoparticles for enhanced radiation therapy.
    Jiao L; Li Q; Deng J; Okosi N; Xia J; Su M
    Nanoscale; 2018 Apr; 10(14):6751-6757. PubMed ID: 29589846
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.
    Leung MK; Chow JC; Chithrani BD; Lee MJ; Oms B; Jaffray DA
    Med Phys; 2011 Feb; 38(2):624-31. PubMed ID: 21452700
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical Radiotherapy.
    Sisin NNT; Mat NFC; Rashid RA; Dollah N; Razak KA; Geso M; Algethami M; Rahman WN
    Int J Nanomedicine; 2022; 17():3853-3874. PubMed ID: 36081572
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Pyrazinib (P3), [(E)-2-(2-Pyrazin-2-yl-vinyl)-phenol], a small molecule pyrazine compound enhances radiosensitivity in oesophageal adenocarcinoma.
    Buckley AM; Dunne MR; Lynam-Lennon N; Kennedy SA; Cannon A; Reynolds AL; Maher SG; Reynolds JV; Kennedy BN; O'Sullivan J
    Cancer Lett; 2019 Apr; 447():115-129. PubMed ID: 30664962
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Radiosensitization effects by bismuth oxide nanorods of different sizes in megavoltage external beam radiotherapy.
    Jamil A; Abidin SZ; Razak KA; Zin H; Yunus MA; Rahman WN
    Rep Pract Oncol Radiother; 2021; 26(5):773-784. PubMed ID: 34760312
    [TBL] [Abstract][Full Text] [Related]  

  • 96. In vitro cytotoxicity of surface modified bismuth nanoparticles.
    Luo Y; Wang C; Qiao Y; Hossain M; Ma L; Su M
    J Mater Sci Mater Med; 2012 Oct; 23(10):2563-73. PubMed ID: 22802106
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement.
    Zhou R; Wang H; Yang Y; Zhang C; Dong X; Du J; Yan L; Zhang G; Gu Z; Zhao Y
    Biomaterials; 2019 Jan; 189():11-22. PubMed ID: 30384125
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles.
    Retif P; Reinhard A; Paquot H; Jouan-Hureaux V; Chateau A; Sancey L; Barberi-Heyob M; Pinel S; Bastogne T
    Int J Nanomedicine; 2016; 11():6169-6179. PubMed ID: 27920524
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.
    An J; Sun A; Qiao Y; Zhang P; Su M
    J Mater Sci Mater Med; 2015 Feb; 26(2):68. PubMed ID: 25631261
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ultrafast Fabrication of Iron/Manganese Co-Doped Bismuth Trimetallic Nanoparticles: A Thermally Aided Chemodynamic/Radio-Nanoplatform for Low-Dose Radioresistance.
    Xie W; Ye J; Guo Z; Lu J; Gao X; Wei Y; Zhao L
    ACS Appl Mater Interfaces; 2022 May; 14(19):21931-21944. PubMed ID: 35511491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.