BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28327435)

  • 1. Network approaches for plant phylogenomic synteny analysis.
    Zhao T; Schranz ME
    Curr Opin Plant Biol; 2017 Apr; 36():129-134. PubMed ID: 28327435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomic Synteny Network Analysis of MADS-Box Transcription Factor Genes Reveals Lineage-Specific Transpositions, Ancient Tandem Duplications, and Deep Positional Conservation.
    Zhao T; Holmer R; de Bruijn S; Angenent GC; van den Burg HA; Schranz ME
    Plant Cell; 2017 Jun; 29(6):1278-1292. PubMed ID: 28584165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening synteny blocks in pairwise genome comparisons through integer programming.
    Tang H; Lyons E; Pedersen B; Schnable JC; Paterson AH; Freeling M
    BMC Bioinformatics; 2011 Apr; 12():102. PubMed ID: 21501495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes.
    Zhao T; Schranz ME
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2165-2174. PubMed ID: 30674676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying Synteny Networks (SynNet) to Study Genomic Arrangements of Protein-Coding Genes in Plants.
    Gamboa-Tuz SD; Pereira-Santana A; Zhao T; Schranz ME
    Methods Mol Biol; 2022; 2512():199-215. PubMed ID: 35818007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines.
    Wang L; Yin X; Cheng C; Wang H; Guo R; Xu X; Zhao J; Zheng Y; Wang X
    Mol Genet Genomics; 2015 Jun; 290(3):825-46. PubMed ID: 25429734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes.
    Staton M; Zhebentyayeva T; Olukolu B; Fang GC; Nelson D; Carlson JE; Abbott AG
    BMC Genomics; 2015 Oct; 16():744. PubMed ID: 26438416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GenomicusPlants: a web resource to study genome evolution in flowering plants.
    Louis A; Murat F; Salse J; Crollius HR
    Plant Cell Physiol; 2015 Jan; 56(1):e4. PubMed ID: 25432975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The promise and pitfalls of synteny in phylogenomics.
    Steenwyk JL; King N
    PLoS Biol; 2024 May; 22(5):e3002632. PubMed ID: 38768403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tapping the promise of genomics in species with complex, nonmodel genomes.
    Hirsch CN; Buell CR
    Annu Rev Plant Biol; 2013; 64():89-110. PubMed ID: 23451780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to usefully compare homologous plant genes and chromosomes as DNA sequences.
    Lyons E; Freeling M
    Plant J; 2008 Feb; 53(4):661-73. PubMed ID: 18269575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenomic synteny network analyses reveal ancestral transpositions of auxin response factor genes in plants.
    Gao B; Wang L; Oliver M; Chen M; Zhang J
    Plant Methods; 2020; 16():70. PubMed ID: 32467718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating synteny for improved comparative studies.
    Ghiurcuta CG; Moret BM
    Bioinformatics; 2014 Jun; 30(12):i9-18. PubMed ID: 24932010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent evolution of genomic characters during major metazoan transitions.
    Simakov O; Kawashima T
    Dev Biol; 2017 Jul; 427(2):179-192. PubMed ID: 27890449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in research on forest tree comparative genomics].
    Wang YX; Xu LA; Huang MR; Xu Y
    Yi Chuan; 2007 Oct; 29(10):1199-206. PubMed ID: 17905709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome.
    Yu J; Wang L; Guo H; Liao B; King G; Zhang X
    BMC Genomics; 2017 Mar; 18(1):257. PubMed ID: 28340563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synteny and comparative analysis of miRNA retention, conservation, and structure across Brassicaceae reveals lineage- and sub-genome-specific changes.
    Jain A; Das S
    Funct Integr Genomics; 2016 May; 16(3):253-68. PubMed ID: 26873704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance.
    Pavy N; Lamothe M; Pelgas B; Gagnon F; Birol I; Bohlmann J; Mackay J; Isabel N; Bousquet J
    Plant J; 2017 Apr; 90(1):189-203. PubMed ID: 28090692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family.
    Sampedro J; Lee Y; Carey RE; dePamphilis C; Cosgrove DJ
    Plant J; 2005 Nov; 44(3):409-19. PubMed ID: 16236151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DRIMM-Synteny: decomposing genomes into evolutionary conserved segments.
    Pham SK; Pevzner PA
    Bioinformatics; 2010 Oct; 26(20):2509-16. PubMed ID: 20736338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.