These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28327718)

  • 21. Ionic thermoelectric gating organic transistors.
    Zhao D; Fabiano S; Berggren M; Crispin X
    Nat Commun; 2017 Jan; 8():14214. PubMed ID: 28139738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoelectric energy recovery at ionic-liquid/electrode interface.
    Bonetti M; Nakamae S; Huang BT; Salez TJ; Wiertel-Gasquet C; Roger M
    J Chem Phys; 2015 Jun; 142(24):244708. PubMed ID: 26133450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in ionic thermoelectric systems and theoretical modelling.
    Jabeen N; Muddasar M; Menéndez N; Nasiri MA; Gómez CM; Collins MN; Muñoz-Espí R; Cantarero A; Culebras M
    Chem Sci; 2024 Aug; 15(35):14122-53. PubMed ID: 39211742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting.
    Li L; Li H; Wei J; Li R; Sun J; Zhao C; Chen T
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observations of Co4+ in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca3Co4O9.
    Klie RF; Qiao Q; Paulauskas T; Gulec A; Rebola A; Öğüt S; Prange MP; Idrobo JC; Pantelides ST; Kolesnik S; Dabrowski B; Ozdemir M; Boyraz C; Mazumdar D; Gupta A
    Phys Rev Lett; 2012 May; 108(19):196601. PubMed ID: 23003068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical Thermoelectric Conversion with Polysulfide as Redox Species.
    Liang Y; Hui JK; Yamada T; Kimizuka N
    ChemSusChem; 2019 Sep; 12(17):4014-4020. PubMed ID: 31334607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Outstanding Electrode-Dependent Seebeck Coefficients in Ionic Hydrogels for Thermally Chargeable Supercapacitor near Room Temperature.
    Horike S; Wei Q; Kirihara K; Mukaida M; Sasaki T; Koshiba Y; Fukushima T; Ishida K
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43674-43683. PubMed ID: 32935547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
    Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F
    Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodiffusion of citrate-coated γ-Fe
    Kouyaté M; Filomeno CL; Demouchy G; Mériguet G; Nakamae S; Peyre V; Roger M; Cēbers A; Depeyrot J; Dubois E; Perzynski R
    Phys Chem Chem Phys; 2019 Jan; 21(4):1895-1903. PubMed ID: 30632574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermo-Electro-Mechanics at Individual Particles in Complex Colloidal Systems.
    Kollipara PS; Lin L; Zheng Y
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(35):21639-21644. PubMed ID: 32913480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels.
    Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvothermal synthesis of wire-like SnxSb2Te3+x with an enhanced thermoelectric performance.
    Yang HQ; Miao L; Liu CY; Wang XY; Peng Y; Zhang AJ; Zhou XY; Wang GY; Li C; Huang R
    Dalton Trans; 2016 Apr; 45(17):7483-91. PubMed ID: 27046535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An apparatus for concurrent measurement of thermoelectric material parameters.
    Kallaher RL; Latham CA; Sharifi F
    Rev Sci Instrum; 2013 Jan; 84(1):013907. PubMed ID: 23387668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K.
    Martin J; Nolas GS
    Rev Sci Instrum; 2016 Jan; 87(1):015105. PubMed ID: 26827351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancement of Electrochemical Thermoelectric Conversion with Molecular Technology.
    Zhou H; Inoue H; Ujita M; Yamada T
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202213449. PubMed ID: 36239979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge Regulation and pH Effects on Thermo-Osmotic Conversion.
    Mai VP; Huang WH; Yang RJ
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion Steric Effect Induces Giant Enhancement of Thermoelectric Conversion in Electrolyte-Filled Nanochannels.
    Zhang W; Liu X; Jiao K; Wang Q; Yang C; Zhao C
    Nano Lett; 2023 Sep; 23(17):8264-8271. PubMed ID: 37590911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perspectives on Thermoelectric Energy Conversion in Ion-Exchange Membranes.
    Barragán VM; Kristiansen KR; Kjelstrup S
    Entropy (Basel); 2018 Nov; 20(12):. PubMed ID: 33266629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetically enhancing the Seebeck coefficient in ferrofluids.
    Salez TJ; Kouyaté M; Filomeno C; Bonetti M; Roger M; Demouchy G; Dubois E; Perzynski R; Cēbers A; Nakamae S
    Nanoscale Adv; 2019 Aug; 1(8):2979-2989. PubMed ID: 36133602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.