These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. Tian Y; Molina-Lopez F Nanoscale; 2021 Mar; 13(10):5202-5215. PubMed ID: 33688886 [TBL] [Abstract][Full Text] [Related]
47. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Bell LE Science; 2008 Sep; 321(5895):1457-61. PubMed ID: 18787160 [TBL] [Abstract][Full Text] [Related]
48. Modeling thermoelectric transport in organic materials. Wang D; Shi W; Chen J; Xi J; Shuai Z Phys Chem Chem Phys; 2012 Dec; 14(48):16505-20. PubMed ID: 23086525 [TBL] [Abstract][Full Text] [Related]
49. An electrochemical system for efficiently harvesting low-grade heat energy. Lee SW; Yang Y; Lee HW; Ghasemi H; Kraemer D; Chen G; Cui Y Nat Commun; 2014 May; 5():3942. PubMed ID: 24845707 [TBL] [Abstract][Full Text] [Related]
50. Seebeck, Peltier, and Soret effects: On different formalisms for transport equations in thermogalvanic cells. Kjelstrup S; Kristiansen KR; Gunnarshaug AF; Bedeaux D J Chem Phys; 2023 Jan; 158(2):020901. PubMed ID: 36641395 [TBL] [Abstract][Full Text] [Related]
51. A Novel Gel Thermoelectric Chemical Cell for Harvesting Low-Grade Heat Energy. Yue Q; Gao T; Wang Y; Meng Y; Li X; Yuan H; Xiao D ChemSusChem; 2023 Jan; 16(2):e202201815. PubMed ID: 36397292 [TBL] [Abstract][Full Text] [Related]
52. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. Mengistie DA; Chen CH; Boopathi KM; Pranoto FW; Li LJ; Chu CW ACS Appl Mater Interfaces; 2015 Jan; 7(1):94-100. PubMed ID: 25475257 [TBL] [Abstract][Full Text] [Related]
53. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. Liu W; Tan X; Yin K; Liu H; Tang X; Shi J; Zhang Q; Uher C Phys Rev Lett; 2012 Apr; 108(16):166601. PubMed ID: 22680741 [TBL] [Abstract][Full Text] [Related]
54. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-). Ohta H; Sugiura K; Koumoto K Inorg Chem; 2008 Oct; 47(19):8429-36. PubMed ID: 18821809 [TBL] [Abstract][Full Text] [Related]
56. Collective thermoelectrophoresis of charged colloids. Majee A; Würger A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061403. PubMed ID: 21797360 [TBL] [Abstract][Full Text] [Related]
57. Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties. Farahi N; VanZant M; Zhao J; Tse JS; Prabhudev S; Botton GA; Salvador JR; Borondics F; Liu Z; Kleinke H Dalton Trans; 2014 Oct; 43(40):14983-91. PubMed ID: 25005794 [TBL] [Abstract][Full Text] [Related]
58. Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. Anari EH; Romano M; Teh WX; Black JJ; Jiang E; Chen J; To TQ; Panchompoo J; Aldous L Chem Commun (Camb); 2016 Jan; 52(4):745-8. PubMed ID: 26563939 [TBL] [Abstract][Full Text] [Related]
59. Large counterions boost the solubility and renormalized charge of suspended nanoparticles. Guerrero-García GI; González-Mozuelos P; Olvera de la Cruz M ACS Nano; 2013 Nov; 7(11):9714-23. PubMed ID: 24180597 [TBL] [Abstract][Full Text] [Related]
60. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Ding G; Gao G; Yao K Sci Rep; 2015 Jun; 5():9567. PubMed ID: 26045338 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]